共查询到18条相似文献,搜索用时 31 毫秒
1.
2.
3.
采用格子玻尔兹曼方法模拟高低热导率相间表面的饱和池沸腾过程,研究不同表面高低热导率区域热导率比值、低热导率区域宽度和深度对沸腾换热性能的影响。对比均匀热导率表面与高低热导率相间表面的沸腾曲线发现:高低热导率相间表面的沸腾过程可被分为5个阶段,并且其临界热流密度最高可达均匀表面的12倍;高低热导率相间可促使表面维持一定的温度差异,从而保持明显的气液流动;随着低热导率区域宽度增大,气液分离更加明显,低热导率区域宽度存在一个最优值,其与毛细长度的量级接近;随着低热导率区域的深度增大,表面过热度的差异更加明显。 相似文献
4.
5.
6.
7.
对强润湿性液体的池沸腾传热实验而言,本文提出了行之有效的实验程序,并严格按照实验程序进行了R113池沸腾传热的实验研究,具体研究了表现老化和液体过冷度对池沸腾传热曲线及起沸点的影响,实验中观察到了三个反常现象,最后,从强润湿性液体的沸腾传热机理的角度对其给出了相应的解释。 相似文献
8.
安逸;王誉凯;黄丛亮 《热科学与技术》2025,(2):168-173
通过化学处理金属铜网,制备了具有不同层数和湿润性的多层铜网样品。以去离子水作为液态工质,在相同的条件下,对制备的多组样品进行可视化池沸腾实验,分析了池沸腾换热特性和气泡动力学行为。研究结果表明:在低热流密度下,疏水结构换热性能略优;在大热流密度下,亲水结构换热性能更优;对于多层铜网结构,厚度可以增大换热面积和成核点位,但过厚会增大气泡逃逸阻力。实验中5层的亲水铜网换热性能最优,换热系数峰值可达7.4×10~4 W/(m2·K),是相同热流密度下光滑铜表面沸腾换热系数的2.10倍。 相似文献
9.
一、前言 当前全世界普遍重视节省能源,降低产品能耗已成为重要的研究课题。构成节能对象的机器设备中,有众多的热交换器,因此,研究提高现有传热设备的性能和探求新的强化方法,对于降低能耗具有重要意义。 相似文献
10.
电化学表面处理一直以来都是池沸腾传热强化领域的一种重要的表面改性方法。然而,在光滑表面通过不断沉积生长枝晶结构的同时,结构底层会形成不必要的堆积层,从而增加了底层的热阻,不利于表面沸腾传热系数(HTC)的提升。因此,本文通过结合电化学表面处理手段中的电化学腐蚀与电化学沉积两方面的工艺,制备了“电腐蚀+沉积”表面,来探究经预先腐蚀处理后的表面与直接沉积表面沉积形貌及沸腾传热性能的差异。SEM图像表明,相较于在未处理铜板上直接进行沉积的表面,“电腐蚀+沉积”表面具有更长的枝晶结构、更深的孔结构及较少的底层堆积,结构的整体粗糙度更大。稳态池沸腾实验结果表明,在未处理铜板上直接进行电沉积的表面,其临界热流密度值较未处理铜板提升141%,而“电腐蚀+沉积”表面的临界热流密度值相较于未处理铜板提升了193%,并且其整体的沸腾曲线相较于直接沉积表面左移。对表面沸腾过程中汽泡行为的观测及表面铺展速率测试结果表明,“电腐蚀+沉积”表面具有更强的回液能力,能更好地促进表面气泡的脱离过程。 相似文献
11.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998 相似文献
12.
Experimental studies were made on heat transfer on a horizontal platinum wire during nucleate pool boiling in nonazeotropic refrigerant binary mixtures at pressures of 0.25 to 0.7 MPa and at heat fluxes up to CHF. The boiling features of the mixtures and the single-component substances were observed by photography. The relationship between the boiling behavior and the reduction of heat transfer coefficients in binary mixtures is discussed in order to propose a correlation useful for predicting the present experimental data over a wide range of low to high heat fluxes. It is shown that the correlation is applicable to alcoholic mixtures. The physical meaning of k, which was introduced to evaluate the effect of heat flux on the reduction of a heat transfer coefficient, is clarified based on measured nucleate pool boiling heat transfer data and visual observations of the boiling features. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(7): 535–549, 1998 相似文献
13.
The artificial surfaces are applied to study the pool boiling features, including the bubble behaviors, the surface temperature
fluctuation, the heat transfer characteristics and nucleate site interaction. Three sets of experiments are carried out to
investigate the influences of cavity shape, cavity size, cavity spacing on the boiling phenomena. Experimental results reveal
that bubbling from the cylindrical as well as reentrant cavity is generally stable. The influence of cavity diameter on the
bubble behaviors and the temperature fluctuation seems very weak while the effect of cavity depth cannot be neglected. As
for the two cavity conditions, the bubble behaviors show the different features depending on the dimensionless cavity spacing.
Three significant factors (thermal interaction, hydraulic interaction, bubble coalescence) control the nucleation site interaction,
and the competition and dominance of the factors yield four interaction regimes. 相似文献
14.
The artificial surfaces are applied to study the pool boiling features, including the bubble behaviors, the surface temperature fluctuation, the heat transfer characteristics and nucleate site interaction. Three sets of experiments are carried out to investigate the influences of cavity shape, cavity size, cavity spacing on the boiling phenomena. Experimental results reveal that bubbling from the cylindrical as well as reentrant cavity is generally stable. The influence of cavity diameter on the bubble behaviors and the temperature fluctuation seems very weak while the effect of cavity depth cannot be neglected. As for the two cavity conditions, the bubble behaviors show the different features depending on the dimensionless cavity spacing. Three significant factors (thermal interaction, hydraulic interaction, bubble coalescence) control the nucleation site interaction, and the competition and dominance of the factors yield four interaction regimes. 相似文献
15.
The heat transfer of pool boiling in bead packed porous layers was experimentally investigated to analyze the effects of the bead material, bead diameter and the layer number of the porous bed on the transport of flux and the heat transfer coefficients. The glass and copper bead, the bead sizes of 4 mm and 6 mm as well as the bead packed porous structures ranging from one to three layers were chosen in the experiments. The pool boiling heat transfer in the bead packed porous structures and that on the plain surface were compared to analyze the enhancement of pool boiling heat transfer while the bead packed porous layers were employed. The maximum relative error between the collected experimental data of the pure water on a plain surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12%. Besides, the boiling bubble generation, integration and departure have a great effect on the pool boiling and were recorded with a camera in the bead stacked porous structures of the different layers and materials at different heat flux. All these results should be taken into account for the promotion and application of bead packed porous structures in pool boiling to enhance the heat transfer. 相似文献
16.
A composite heating surface composed of materials with different thermal conductivities can be expected to enhance heat transfer in nucleate boiling. This is because the end surface, with higher conductivity, will attain a higher temperature and as a result will serve to provide preferential nucleation sites. To confirm this idea, several composite surfaces were fabricated by uniaxially imbedding thin copper cylinders in the heat flow direction on a stainless steel circular plate 30 mm in diameter and 5 mm thick. The imbedded copper cylinders ranged from 1 mm to 4 mm in diameter and one to 77 in number. The heat transfer performance of these composite surfaces was investigated for pool boiling of saturated water at atmospheric pressure. It was confirmed that the copper cylinder surfaces exposed to water functioned as local hot spots to initiate preferential nucleate boiling, leading to higher boiling heat transfer coefficients than those on a homogeneous stainless steel surface. The measured void fraction above the heating surface verified intensive bubble generation on the surface of the copper cylinders. This situation continued up to a certain heat flux level and was then followed by nucleation on the mother surface of stainless steel around the copper cylinders. A numerical analysis of heat conduction within a composite wall simulated the temperature distribution within the wall and the variation in surface heat flux at the time of boiling incipience. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(3): 216–228, 1998 相似文献
17.
水平窄空间沸腾传热的实验研究 总被引:1,自引:1,他引:0
通过对五种尺寸的窄空间试验元件分别以水和乙醇做工质进行实验。研究了窄空间间距、窄空间尺寸、不同工质及不同热流密度对窄空间沸腾性能的影响。结果表明:当窄空间尺寸与热流通等因素组合恰当时。其换热系数可比大空间池沸腾提高3~6倍;临界热流密度有所降低。 相似文献
18.
SurfacesInvestigationofEnhancedBoilingHeatTransferfromPorousSurfaces¥LinZhiping;MaTongze;ZhangZhengfang(InstituteofEngineerin... 相似文献