首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
为研究玄武岩纤维对水泥土抗拉力学性能的影响,选取不同长度、直径及掺量的玄武岩纤维掺入水泥土,通过开展单轴拉伸试验、无侧限抗压强度试验和扫描电镜试验,并采用正交试验极差法,分析了玄武岩纤维对水泥土的应力-应变曲线、抗拉强度、拉压强度比和破坏形态的影响规律和微观作用机理。结果表明:玄武岩纤维水泥土的单轴抗拉试验应力-应变曲线可分为弹性变形、破坏、残余强度和稳定4个阶段;纤维变量对抗拉性能影响大小依次顺序为长度、掺量、直径;玄武岩纤维长度9 mm和掺量1.5%为玄武岩纤维的最优单掺参数。玄武岩纤维水泥土的拉压比较未掺入纤维的水泥土的拉压比高,但纤维种类和掺量等对纤维水泥土的拉压比影响较大;三维随机网状分布的玄武岩纤维可提升水泥土的抗拉强度和韧性。  相似文献   

2.
高渗压下帷幕防渗结构既要求有良好防渗性能,又要保证其抗剪与防止水力劈裂性能。利用TRD工法在水泥土搅拌方式上的突破,系统研究TRD施工中实现玄武岩纤维在水泥土中分散均匀的现场搅拌工艺,提出玄武岩纤维加筋TRD防渗墙的施工方法。对取芯后的试样开展劈裂抗拉强度试验,讨论水泥和玄武岩纤维掺量、玄武岩纤维长度、养护龄期等因素对玄武岩纤维加筋TRD防渗墙抗水力劈裂特性的影响。结果表明:对于搅拌分散液,P.O 42.5级普通硅酸盐水泥、钠基膨润土、玄武岩纤维与地层土体的搅拌效果较为理想;加筋水泥土的抗拉强度随着玄武岩纤维掺量和长度的增加会出现先升高后降低的峰值特性,最优玄武岩纤维掺量和长度分别为0.4%和12mm。  相似文献   

3.
对素水泥土及玄武岩纤维水泥土进行了冻融循环作用前后的无侧限抗压、劈裂抗拉试验,探讨并对比了冻融循环次数、养护龄期、水灰比、纤维掺量等因素对两种水泥土力学性能的影响规律。结果表明:掺入玄武岩纤维后水泥土的冻融强度损失率降低;水泥土的冻融强度损失率随水灰比的增大而增大,随龄期的增大而减小;冻融后水泥土的无侧限抗压强度、劈裂抗拉强度与其受到的冻融循环次数之间的关系可用双曲线拟合;水泥土的劈裂抗拉强度与无侧限抗压强度的比值在14%~17%之间。  相似文献   

4.
以庐山市沙湖山乡境内的沙湖山圩为例,重点进行了圩堤堤身深层搅拌桩连续防渗墙加固处理中水泥掺量、纤维加筋材料掺量、外掺剂类型、纤维长度等参数对水泥浆液劈裂抗拉强度影响的试验研究。结果表明,水泥掺量对水泥浆抗拉强度的影响微乎其微,但外掺剂类型、玄武岩纤维掺量以及纤维长度对水泥浆劈裂抗拉强度影响较大;根据试验结果,最终选择纳基膨润土外掺剂,同时选用长度12mm的玄武岩纤维,并按0.4%的掺量掺加,以最大程度提升玄武岩纤维加筋防渗墙劈裂抗拉强度。  相似文献   

5.
通过试验研究了冻融循环对素水泥土及纤维水泥土的抗疲劳性能的影响。试验结果表明:掺入适量的玄武岩纤维可以改善水泥土的抗压、抗疲劳性能,而且对后者的影响更显著;纤维掺量越高,水泥土抵抗冻融循环破坏的能力也越强;水灰比对水泥土的抗压能力和抗疲劳能力的影响很大,因此在保证水泥土均匀拌合的前提下尽可能降低水灰比;应力水平越高,水泥土的疲劳寿命越短,且采用统计软件拟合出了应力水平S和疲劳寿命N之间的关系,工程上可根据S-N关系推测水泥土的应力水平或疲劳寿命。  相似文献   

6.
为指导纤维水泥土材料在实际工程应用,文章通过室内试验研究了水泥土、玻璃纤维水泥土和玄武岩纤维水泥土力学性能.试验结果表明:随养生龄期增加,水泥土力学强度呈幂函数关系增长,养生前期力学强度增长速率显著;水泥土力学强度随水泥剂量增加呈线性增长,且建立的强度增长模型能较好地预测水泥土强度增长趋势,水泥掺量增加1%,水泥土抗压强度和劈裂强度分别平均增长25.4%、36.7%;纤维水泥土强度增长规律与水泥土基本一致,玄武岩纤维水泥土力学强度略高于同条件的玻璃纤维水泥土强度,纤维水泥土28d抗压强度至少是180d抗压强度的78.9%;28d劈裂强度至少是180d劈裂强度的77.8%.  相似文献   

7.
工程建设根据规范规定水泥土搅拌桩水泥掺量一般在 15% 左右 , 为了了解加固土所采用水泥掺量、水灰比、以及水泥土强度与龄期关系 , 需进行水泥土配合比试验 . 在水泥土搅拌桩施工前 3个月 , 施工单位在现场钻取土样进行试验 , 水泥为 425# 普通硅酸盐水泥 , 水泥掺量分别按 16% 、 18% 进行试验 , 按水泥土 3d、 7d、 30d、 90d测无侧限抗压强度 . 根据室内试验结果 , 决定在节制闸、抽水站基础选用 18% 水泥掺量 , 水灰比选用 0 5.  相似文献   

8.
系统探究不同玄武岩纤维(BF)掺量及长度对不同龄期低热水泥混凝土强度影响规律,为改善低热水泥混凝土早龄期强度提供基础。BF掺量设置为0.0%、0.1%、0.2%、0.3%,长度设置为12 mm、24 mm,养护龄期设置为3 d、5 d、7 d、14 d、28 d,得到不同BF掺量及长度对不同龄期低热水泥混凝土抗压强度影响规律。研究结果表明:不同长度及掺量的BF均能改善低热水泥混凝土的强度性能,最大增幅达20.47%。不同龄期下BF纤维掺量及长度的强度作用效应存在显著差异。除3 d龄期外,其余龄期下抗压强度随12 mm BF掺量增加呈先增加后降低的趋势,抗压强度峰值掺量为0.2%。除28 d龄期外,抗压强度随24 mm BF掺量增加而持续增大,而28 d龄期抗压强度则呈先增大后降低趋势,转折点掺量为0.1%。相同BF掺量及长度条件下,BF对短龄期低热水泥混凝土抗压强度提升效果较长龄期更为显著,推荐BF长度12 mm,掺量0.2%。  相似文献   

9.
大掺量高钙粉煤灰碾压混凝土配合比试验研究   总被引:2,自引:1,他引:1  
含游离氧化钙(f-CaO)5.1%、细度为20.5%的高钙粉煤灰,按35%、45%、55%、65%掺入水泥中,拌制的碾压混凝土3、7、28、90、180 d抗压强度能持续增长;高钙粉煤灰改性剂的掺量对早期(3 d)抗压强度影响显著.通过正交试验确定的碾压混凝土配合比,高钙粉合理掺量为55%,不掺改性剂,高效减水剂掺量为0.5%,其90d抗压、抗渗强度均能满足C9015W4的要求,抗拉强度达2胁以上.  相似文献   

10.
水泥土具有抗压、抗剪、抗拉强度高,抗渗破坏能力强等工程应用的突出优点,在地基加固、边坡处理、渠道防渗、抗渗等方面有着广泛的应用前景。为了更深入地认识水泥土抗压路径及强度随水泥掺量、龄期的变化规律,采用改装三轴压缩仪,对不同水泥掺量和龄期的水泥土进行了室内单轴压缩试验研究。结果表明:低掺量、低龄期水泥土,抗压应力应变曲线较平缓,表现为小应力、大应变塑性破坏特征;高掺量、高龄期水泥土,抗压应力应变曲线较陡,表现为大应力、小应变脆性破坏特征。抗压强度随水泥掺量和龄期的增大而增大,且增幅逐渐减小;破坏应变随水泥掺量和龄期的增大而减小,且减小幅度逐渐变小。  相似文献   

11.
通过压实试验、无侧限抗压强度试验和劈裂试验,分析不同木质纤维含量、水泥含量和固化时间对软土力学性能的影响规律,探讨木质纤维、水泥改良软土的微观机制。结果表明,木质纤维的加入对水泥改良软土的击实特性有显著的影响;木质纤维与水泥可有效改善土体的抗压和劈裂抗拉强度,随着木质纤维含量的增加,改良土的抗压和劈裂抗拉强度呈现出明显的“驼峰”现象,并在木质纤维含量为0.25%时最大;木质纤维与水化产物、软土颗粒形成互锁效应,增大了改良土的摩擦力,同时木质纤维还承担一定的拉伸强度,使改良土的劈裂强度增加。  相似文献   

12.
盐渍土的盐胀溶陷等不良工程特性对交通基础设施建设及其安全运行有着极其不利影响。现以南疆地区路基氯盐渍土为研究对象,开展了不同龄期改良氯盐渍土2种试验方案的无侧限抗压强度试验及SEM-EDS试验,研究水玻璃、水泥、石灰、粉煤灰及纤维等多种材料联合改良盐渍土的机理及其微观特征。研究结果表明:以28 d抗压强度作为评价标准,方案1中最优组合为水泥8%+石灰12%+纤维0.2%+纤维长度18 mm+含盐量3%,适用于中盐渍土改良;方案2中最优组合为粉煤灰20%+石灰6%+纤维0.2%+纤维长度12 mm+含盐量1%,适用于弱盐渍土改良。2种方案改良盐渍土越过应力峰值后仍能保持较高的抗压强度值,改良盐渍土应力-应变曲线呈应变软化型,试样呈脆性破坏。根据微观结构及EDS分析,改良盐渍土的矿物颗粒相对较大,颗粒完整性较好,胶凝物由絮状水化硅酸钙和针状钙矾石构成,其微观结构较致密,颗粒间接触方式以面-面接触方式为主;相比方案2,方案1内部结构排列致密,内部完整性好,强度性能优越。该研究成果丰富了氯盐渍土改良技术,为盐渍土在路基处理中再循环利用提供了技术参考。  相似文献   

13.
在混凝土中掺加纤维材料,能够改善自密实混凝土抗拉性能差与延性差的缺点。在分别加入钢纤维、玄武岩纤维与聚丙烯纤维掺料的基础上,通过对自密实混凝土进行塌落扩展度、V型漏斗、L仪试验、抗压强度试验与劈裂试验,研究了纤维种类、纤维体积率与纤维尺寸对自密实混凝土流动性、间隙通过性、抗压强度及劈裂强度的影响。试验结果表明:纤维长度越大、掺量越大,其对自密实混凝土流动性的抵抗作用越强,其中玄武岩纤维的影响最明显,聚丙烯纤维其次,钢纤维相对较弱。除长度在6mm时,钢纤维可少量增强混凝土抗压强度,其他长度对抗压强度的影响不明显;聚丙烯纤维和玄武岩纤维均明显削弱了抗压强度,当聚丙烯纤维体积掺量为0.3%和长度为6mm时,混凝土抗压强度下降了55.8%。钢纤维对劈裂强度有明显影响:短钢纤维具有削弱作用,长钢纤维具有明显增强作用;但钢纤维的掺量对劈裂强度影响不大。此外,聚丙烯纤维和玄武岩纤维对劈裂强度的影响较弱。  相似文献   

14.
为了研究纤维长度对水泥稳定再生集料力学性能的影响,开展了无侧限抗压试验、劈裂抗拉试验,并结合脆性对纤维在水泥再生集料中的力学性能进行评价。试验结果表明:1)纤维的掺入一定程度上会降低水泥再生集料的强度;2)纤维的掺入明显增加了水泥再生集料的脆性,并且当掺入纤维长度为 12 mm 时,其改善脆性的效果最好。综上可得,12 mm 为聚丙烯纤维在水泥稳定再生集料中的最优长度。  相似文献   

15.
为改善陶粒混凝土和易性差、脆性大等缺点,采用正交试验设计方法,考虑棉花秸秆纤维、EPS、 水泥及砂率在三水平的影响下,配制植物纤维增强型EPS陶粒混凝土试块。对试块的抗压及劈裂抗拉 强度进行极差和方差分析,确定满足一定考察指标的材料最优组合。结果表明:EPS颗粒掺量是影响试 块抗压强度的最显著因素;棉花秸秆纤维能显著提高陶粒混凝土试块的抗劈拉强度,延缓混凝土开裂。 最终确定水泥掺量40%、EPS颗粒掺量0.45%、棉花秸秆纤维掺量1.0%、砂率2.5%时抗压强度在8.0 MPa~10.0MPa范围内为各种因素的最优组合。  相似文献   

16.
在欧洲规范CEB-FIPModelCode1990可计算出普通混凝土任意龄期的抗压强度、劈拉强度与 弹性模量的基础上,通过测试不同钢纤维掺量的陶粒混凝土在不同龄期(1d、2d、3d、5d、7d、14d、28d) 时的抗压强度、劈拉强度和弹性模量,并与理论值作对比,验证现有欧洲规范对钢纤维陶粒混凝土力学 性能随龄期发展规律预测的适用性和准确性。研究表明:欧洲规范对钢纤维陶粒混凝土力学性能随龄 期发展规律在最初的5d或3d并不适用;采用1d、28d抗压强度、劈拉强度与弹性模量计算其他各龄期 的抗压强度、劈拉强度与弹性模量小于采用7d、28d抗压强度、劈拉强度与弹性模量计算得到的相对误 差的最大值。建议采用1d、28d的抗压强度、劈拉强度和弹性模量计算掺钢纤维的陶粒混凝土任意龄 期的抗压强度、劈拉强度与弹性模量。  相似文献   

17.
为了研究玄武岩纤维加筋黄土的力学性能,通过正交试验设计进行无侧限抗压强度试验,并采用极差分析和方差分析相结合的方法对试验结果进行分析,研究了含水率、纤维掺量、压实度等3个主要因素对玄武岩纤维加筋黄土无侧限抗压强度影响的主次顺序。随后还基于分析结果进行固结不排水三轴压缩试验,进一步研究了纤维掺量对玄武岩纤维加筋黄土抗剪强度指标的影响规律。研究结果表明:影响玄武岩纤维加筋黄土抗压强度的主次因素顺序依次为纤维掺量、含水率、压实度;方差分析得到的最优水平组合为纤维掺量0.4%、含水率11%、压实度0.95;玄武岩纤维的掺入能够有效提高抗剪强度,凝聚力随掺量的增加先增后减,而内摩擦角波动区间较小;玄武岩纤维加筋黄土的应力-应变关系总体能够较好地符合双曲线模型,其拟合结果b值随围压增大而减小,随纤维掺量增加而先增后减,且纤维掺量存在0~0.2%这一临界区间。  相似文献   

18.
采用正交的试验方法,以混凝土强度3,7,28,90 d龄期的抗压强度和28 d龄期的劈裂抗拉强度作为评价指标。试验结果表明水胶比以0.27为最优,以28 d龄期为准,由试验确定的最佳锂渣和钢渣掺量分别为10%和20%,锂渣、钢渣高性能混凝土28d劈裂抗拉强度在一定程度上与其抗压强度呈现比例关系。在最优水胶比条件下,锂渣、钢渣高性能混凝土的28 d龄期及28 d龄期以后的抗压强度均高于常规混凝土和单掺锂渣混凝土,同时,728 d龄期的锂渣、钢渣混凝土强度增长幅度最大且最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号