共查询到18条相似文献,搜索用时 109 毫秒
1.
提出了一个利用多个拉格朗日乘子协同优化的支持向量机快速学习方法(MLSVM),并给出了每个乘子的可行域范围的定义公式,由于在每个乘子的优化过程中使用了解析表达式,使得算法可以更加精确和快速地逼近最优解,可以证明SMO算法是该方法的一个特例.在此方法的理论指导下,根据不同的学习策略,程序实现了3种不同的具体算法(MLSVM1,MLSVM2,MLSVM3),其中前两个算法在数据集不大时(<5000条记录)学习速度与SMO算法相当,但当数据集更大时,算法就失效了.MLSVM3是一个改进算法,总结了MLSVM1和MLSVM2失效的原因,对SMO算法中学习效率较低的部分进行了改进,在多个数据集上测试,MLSVM3算法速度超过了SMO算法7.4%~4130%. 相似文献
2.
在对两种SVM学习算法(SMO和SVMlight)进行分析的基础上,提出了一种改进的基于集合划分和SMO的算法SDBSMO。该算法根据样本违背最优化条件的厉害程度将训练集划分为多个集合,每次迭代后利用集合信息快速更新工作集和相关参数,从而减少迭代开销,提高训练速度。实验结果表明该算法能很好地提高支持向量机的训练速度。 相似文献
3.
4.
5.
一种回归神经网络的快速在线学习算法 总被引:11,自引:0,他引:11
针对回归神经网络BP学习算法收敛慢的缺陷,提出了一种新的快速在线递推学习算法.本算法在目标函数中引入了遗忘因子,并借助于非线性系统的最大似然估计原理成功地解决了动态非线性系统回归神经网络模型权系数学习的实时性和快速性问题.仿真结果表明,该算法比传统的回归BP学习算法具有更快的收敛速度. 相似文献
6.
提出的算法是利用凸函数共轭性质中的Young不等式构造优化目标函数,这个优化目标函数对于权值和隐层输出来说为凸函数,不存在局部最小。首先把隐层输出作为变量进行优化更新,然后快速计算出隐层前后的权值。数值实验表明:此算法简单,收敛速度快,泛化能力强,并大大降低了学习误差。 相似文献
7.
8.
9.
首先运用Bagging算法解决样本数据变化带来的不稳定性,然后运用网格搜索法寻找合适的训练样本尺寸,再结合两者的特点,提出了一种自助网格搜索算法,从多个支持向量机(SVM)分类器中寻求一个最优的SVM分类器.实验结果表明,算法有效地提高了分类器的学习精度与学习性能,对大样本数据来说,可以用相对较少的样本进行训练后的性能来预测它对一个非常庞大的训练集的性能,大大减少了SVM训练的时间. 相似文献
10.
11.
为了快速地进行分类,根据几何思想来训练支持向量机,提出了一种快速而简单的支持向量机训练算法——几何快速算法。由于支持向量机的最优分类面只由支持向量决定,因此只要找出两类样本中所有支持向量,那么最优分类面就可以完全确定。该新的算法根据两类样本的几何分布,先从两类样本的最近点开始;然后通过不断地寻找违反KKT条件的样本点来找出支持向量;最后确定最优分类面。为了验证新算法的有效性,分别利用两个公共数据库,对新算法与SMO算法及DIRECTSVM算法进行了实验对比,实验结果显示,新算法的分类精度虽与其他两个方法相当,但新算法的运算速度明显比其他两个算法快。 相似文献
12.
超球体单类支持向量机的SMO训练算法 总被引:3,自引:0,他引:3
由于One-class支持向量机能用于无监督学习,被广泛用于信息安全、图像识别等领域中.而超球体One class支持向量机能生成一个合适的球体,将训练样本包含其中,故更适合于呈球形分布的样本学习.但由于超球体One-class支持向量机没有一种快速训练算法,使其在应用中受到限制.SMO算法成功地训练了标准SVM,其训练思想也可用于超球体One-class支持向量机的训练.本文提出了超球体One-class支持向量机的SMO训练算法,并对其空间和时间复杂度进行了分析.实验表明,这种算法能迅速、有效地训练超球体One-class支持向量机. 相似文献
13.
14.
基于蚁群算法的SVM模型选择研究 总被引:3,自引:0,他引:3
为了提高SVM的分类器性能,提出使用蚁群算法来指导SVM模型参数的选择,并针对采用RBF作为核函数的SVM进行了实验。然后将该方法与基于GA的SVM模型选择方法进行了比较。实验证明采用蚁群算法具有一定的优势,它能在较短的时间内寻找到最优解,且最终得到的分类结果优于遗传算法。 相似文献
15.
为了提高SVM的分类器性能,提出使用蚁群算法来指导SVM模型参数的选择,并针对采用RBF作为核函数的SVM进行了实验。然后将该方法与基于GA的SVM模型选择方法进行了比较。实验证明采用蚁群算法具有一定的优势,它能在较短的时间内寻找到最优解,且最终得到的分类结果优于遗传算法。 相似文献
16.
17.