共查询到20条相似文献,搜索用时 0 毫秒
1.
短程硝化/厌氧氨氧化联合工艺处理含氨废水的研究 总被引:1,自引:1,他引:1
在SBR中接种普通好氧活性污泥,通过控制运行条件来实现短程硝化,同时提高厌氧生物转盘系统中厌氧氨氧化的氮负荷,使之与SBR出水中NO2--N的积累量相匹配,并将二者组合形成短程硝化/厌氧氨氧化自养脱氮工艺.处理含氨废水的试验结果表明:在SBR的进水NH4+-N为150~250 mg/L、温度为(28±2)℃、pH值为7~8、DO<1 mg/L的条件下,可实现稳定的短程硝化,NO2--N积累率达85%以上,NH4+-N负荷达0.129 kgN/(kgVSS·d),AOB和NOB的数量之比为103:1.将短程硝化出水加入NH4+-N后作为厌氧氨氧化反应器的进水,在(40±1)℃下可以达到自养脱氮的目的,对NH4+-N、NO2--N和TN的去除率分别达86%、97%和90%以上,TN容积负荷为0.488 kgN/(m3·d). 相似文献
2.
短程硝化/厌氧氨氧化一步法自养脱氮中试研究 总被引:3,自引:0,他引:3
一步法自养脱氮工艺在高氨氮废水处理中具有运行能耗低、不需外加碳源等优点。利用总容积为50 m3的SBR反应器处理高氨氮废水,成功实现了短程硝化/厌氧氨氧化一步法自养脱氮。反应器对不同氨氮浓度(350~4 300 mg/L)的废水均表现出良好的处理效果,对氨氮与总氮的平均去除率分别达到95%和90%以上。同时,还研究了反应器运行的主要影响因素、污泥粒径分布及微生物群落结构。结果表明,系统内形成了红色的厌氧氨氧化颗粒,且颗粒的比例随运行逐渐增加;而维持合理的溶解氧和氨氮浓度是实现高负荷脱氮的关键因素。 相似文献
3.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水 总被引:1,自引:0,他引:1
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质. 相似文献
4.
《Planning》2022,(1):177-185
采用改进的升流式厌氧污泥床(UASB)反应器,在温度为30℃条件下,逐渐缩短HRT(水力停留时间)由9.6 d到0.9 d,经过160 d运行,成功培养出反硝化厌氧甲烷氧化与厌氧氨氧化耦合颗粒污泥,采用荧光原位杂交(FISH)分析、16S rRNA分析等方法研究颗粒结构和微生物组成特征。结果表明:耦合颗粒污泥的氨氮和亚硝酸盐的脱除速率分别为588.9和523 mg·L~(-1)·d~(-1),反硝化厌氧甲烷氧化活性达95.2 mg·L~(-1)·d~(-1),出水硝酸盐质量浓度小于40 mg·L~(-1),总氮去除率达92.5%;耦合颗粒污泥平均粒径为0.76 mm,与接种厌氧氨氧化颗粒污泥相比增加了1.46倍;反硝化厌氧甲烷氧化微生物主要位于耦合颗粒污泥外层,厌氧氨氧化菌位于耦合颗粒污泥内部;主要的厌氧氨氧化菌为Candidatus Brocadia,主要的反硝化厌氧甲烷氧化细菌为Candidatus Methylomirabilis,反硝化厌氧甲烷氧化古菌为Candidatus Methanoperedens。 相似文献
5.
亚硝化-厌氧氨氧化组合工艺脱氮研究 总被引:7,自引:0,他引:7
以高氨氮模拟废水为研究对象,对影响亚硝化-厌氧氨氧化组合工艺脱氮效果的几个因素(DO、pH、碱度、有机物浓度、NU4^+-N/NO2^-—N值)进行了考察,以期获得组合工艺的最佳运行方式。研究结果表明,在亚硝化温度为23~26℃,HRT=1d,进水NH4^+-N、TN浓度分别为350、420mg/L,ANH4^+-N/ANO2^--N值为0.8~1.33的条件下,组合工艺对NH4^+-N、TN的最高去除率分别为99.9%、90.8%,平均去除率分别为96%、76.1%。组合工艺的脱氮效率严重受限于亚硝化系统出水的NH4^+-N/NO2^--N值及其稳定性。 相似文献
6.
硫酸盐型厌氧氨氧化反应器的启动特征分析 总被引:7,自引:0,他引:7
研究了硫酸盐型厌氧氨氧化反应器的启动特征及氧化还原电位对SO24-去除性能的影响。首先启动厌氧氨氧化并逐渐提高容积负荷至0.625kg/(m3.d),然后以(NH4)2SO4为唯一基质,启动硫酸盐型厌氧氨氧化。结果表明,历时212d后成功启动了硫酸盐型厌氧氨氧化反应器,对NH4+-N和SO42-的去除量分别为76.2、68mg/L。反应器出水的pH值低于进水的。当将氧化还原电位提高到(-43±10)mV时,硫酸盐型厌氧氨氧化受到抑制。较高的(NH4)2SO4浓度和低氧化还原电位有利于硫酸盐型厌氧氨氧化反应的发生。此外,该反应器还同时存在自养反硝化作用。 相似文献
7.
采用前置厌氧氨氧化生物滤池+亚硝化生物滤池的组合工艺,对高氨氮焦化废水进行脱氮研究,利用亚硝化生物滤池回流液中的亚硝酸盐氮与废水中的氨氮进行反应,以达到脱氮的目的,同时考察了HRT、回流比、DO浓度、p H值等参数对脱氮效果的影响。结果表明:当废水中的氨氮和COD浓度分别为(100~120)、(60~80)mg/L时,控制厌氧氨氧化段混合进水的p H值为8.0、HRT为30 h,亚硝化段出口DO浓度为0.6~1.0 mg/L,回流比为300%,对废水的脱氮率可稳定在80%左右。 相似文献
8.
接种污泥对厌氧氨氧化反应器启动特性的影响 总被引:1,自引:0,他引:1
采用两套相同的ASBR系统,分别接种好氧硝化污泥和自养反硝化污泥,在模拟废水的pH值为7.6~7.9、温度为32 ℃的条件下,分别运行176 d和170 d后,均成功启动了厌氧氨氧化反应器.在稳定运行阶段,其总氮容积负荷分别为0.147和0.11 kgN/(m3·d),对总氮的平均去除率分别为84.81%和81.57%.两组反应器内氨氮和亚硝态氮的减少量与硝态氮的生成量之比分别为1:1.08:0.31和1:1.18:0.33.接种了好氧硝化污泥的反应器启动更快,且对氨氮的去除效果更好. 相似文献
9.
厌氧氨氧化技术工程化的全球现状及展望 总被引:12,自引:1,他引:12
厌氧氨氧化(ANAMMOX)技术因其细菌增长速率缓慢而难以实现工程化.在总结荷兰ANAMMOX技术工程化经验的基础上,介绍了ANAMMOX工程化的进程及其主要障碍,综述了以荷兰为代表的欧洲等国家研发、工程应用ANAMMOX技术的现状.同时,对ANAMMOX技术工程化的应用前景进行了展望. 相似文献
10.
为考察联氨作为自养脱氮系统菌群调节剂的可行性,以实验室内运行的HABRCANON反应器为试验装置,研究不同浓度联氨对自养脱氮系统脱氮效能和功能微生物的影响。结果表明,低浓度(1~4 mg/L)联氨可以抑制亚硝酸盐氧化菌(NOB)的活性,促进厌氧氨氧化菌(AnAOB)的活性,从而提高脱氮效能;高浓度(10 mg/L)联氨对好氧氨氧化菌(AOB)和NOB的抑制作用明显;停止投加联氨后,CANON系统的脱氮效能可迅速恢复;高浓度(10 mg/L)联氨对HABR全程自养脱氮工艺的影响是可逆的,但对NOB的抑制不可逆。对生物膜样品中的优势菌种进行分析发现,AOB和AnAOB为主要的功能微生物。采用低-高-低的联氨投加方式,可以有效抑制自养脱氮反应器内NOB的生长,保证自养脱氮系统的稳定运行。 相似文献
11.
12.
13.
针对现有短程硝化/厌氧氨氧化组合工艺在实际运行过程中存在的控制模式固定等问题,提出了DO、pH值和氨氮联合控制的新型控制模式.采用短程硝化/厌氧氨氧化一体式SBR工艺处理污泥水,通过在线电极实时监测和PLC系统控制,初期以间歇曝气方式运行可实现SBR的快速启动,后期采用连续曝气方式,脱氮速率迅速提升.经过79 d的连续运行,平均脱氮速率可达0.60 kgN/(m3·d),对TN的去除率最高为95.1%. 相似文献
14.
UASB反应器培养厌氧氨氧化菌的试验研究 总被引:2,自引:0,他引:2
于UASB反应器中接种不同浓度的厌氧污泥来培养厌氧氨氧化菌,为深度处理低C/N值的畜禽粪尿提供厌氧氨氧化污泥.结果表明,低污泥浓度的1号反应器经过130 d的运行,在进水氨氮和亚硝态氮浓度均为150 mg/L、TN负荷为0.36 kg/(m<'>·d)的条件下,对TN的去除率在80%以上;高污泥浓度的2号反应器经过200 d的运行,在进水氨氮和亚硝态氮浓度均为340mg/L及TN负荷为0.80 kg/(m<'3>·d)的条件下,对TN的去除率为75%~85%.在稳定运行期1号和2号反应器去除的NH<,4><'+>-N和N02<,2><'->-N量与NO<,3><'->-N生成量之比分别为1:(1.1~1.2):(0.25~0.45)和1:(1.1~1.2):(0.30~0.40),出水pH值大于进水的.可见,接种污泥浓度高的反应器的抗冲击负荷能力强,更有利于厌氧氨氧化污泥的培养. 相似文献
15.
常温下磷酸盐对城市污水厌氧氨氧化的影响 总被引:3,自引:0,他引:3
《中国给水排水》2009,25(19)
在常温条件下采用生物滤池处理城市污水,考察了磷酸盐浓度对其厌氧氨氧化(Anammox)效能的影响.结果表明,磷酸盐对Anammox存在一定的可逆性抑制作用.当进水TP10 mg/L时,生物滤池中有乳白色沉积物形成,经X射线衍射晶相分析,其主要成分为MgNH4PO4·6H2O(MAP),MAP的物理阻滞作用影响了Anammox反应基质的正常传递,从而导致脱氮负荷的明显下降;通过终止投加磷酸盐、短期(2h)降低进水pH和反冲洗三个途径,可实现Anammox脱氮效能的迅速恢复. 相似文献
16.
厌氧氨氧化技术利用NO2--N氧化NH4+-N,实现污水中氮素的高效去除,其中NO2--N的产生是实现厌氧氨氧化应用的难点。短程硝化是获取NO2--N的重要途径之一,但目前在实际工程中通过短程硝化难以实现长期稳定的亚硝酸盐积累。短程反硝化工艺将反硝化过程控制在硝酸盐还原的第一步来积累NO2--N,可实现从反硝化途径获得NO2--N为厌氧氨氧化反应提供底物,去除污水中的氮素污染物。简要介绍了短程反硝化工艺的发展背景、研究进展、启动及控制策略等,并对短程反硝化过程亚硝酸盐积累机制及其与厌氧氨氧化工艺耦合方式进行了总结,最后对其未来的研究方向进行了展望。 相似文献
17.
《Planning》2015,(1)
厌氧氨氧化反应在氮循环中起着非常重要的作用,对处理含高氨氮废水具有重大的潜在实际应用价值。高浓度有机碳源对厌氧氨氧化反应具有明显的抑制作用。如何在有机碳源存在的条件下实现厌氧氨氧化与反硝化的耦合,是实现厌氧氨氧化工程应用面临的巨大挑战。本文综述了有关厌氧氨氧化与反硝化耦合机理及环境影响因素研究进展,并对研究前景进行展望。 相似文献
18.
采用SBR反应器,以硝化污泥和厌氧氨氧化(ANAMMOX)颗粒污泥的混合污泥为接种污泥,以有机模拟废水为研究对象,进行了厌氧氨氧化生物脱氮工艺研究。结果表明,在控制温度为25℃,水力停留时间为12 d,pH值为7.2~8.5,进水NH4+-N为220 mg/L左右、NO2--N为138 mg/L左右、COD为294 mg/L的条件下成功启动了SBR反应器。在高氨氮、低有机物浓度的条件下,ANAMMOX菌和异养反硝化菌能够实现共存,且ANAMMOX菌仍能成为优势菌属,AN-AMMOX反应是反应器中的主导反应。镜检发现,优势菌尺寸约为1μm,呈圆形或椭圆形,成簇聚生,表面可观察到明显的漏斗状缺口,具有典型的厌氧氨氧化菌特征。污泥中形成了以厌氧氨氧化球状菌为主、其他杆状菌和丝状菌共存的微生物混培体。 相似文献
19.
探索高效污水生物脱氮技术一直是污水处理领域的热点问题,而对具有将氨氮直接氧化为硝酸盐氮能力的全程氨氧化菌(Complete ammonia oxidizers, Comammox)的发现重新定义了人们对氮循环的认识。如何将全程氨氧化应用于污水处理厂的生物脱氮可能是未来研究需要重点解决的问题。为此,系统地阐述了Comammox菌的微生物学分类、生化特性和代谢机制,分析了Comammox菌与其他脱氮功能微生物的相互作用,总结了Comammox的影响因素。最后提出了基于Comammox-厌氧氨氧化协同实现城市污水主流脱氮的初步设想,并对Comammox的未来研究方向进行了展望。 相似文献
20.
《Planning》2016,(1)
厌氧氨氧化的发现很大程度上提高了人们对氮循环的理解,厌氧氨氧化为高氨氮废水的去除带来很大希望。然而,有机碳源的存在会对该过程产生不利影响。在实际废水中,会不可避免地存在有机碳及氮。厌氧氨氧化与反硝化耦合反应可实现在单一系统中同时脱氮除碳。由于该工艺为生物脱氮过程,温度是影响微生物的主要因素,所以温度及有机物都会对厌氧氨氧化与反硝化耦合反应产生重要影响。本文综述了有机物及温度对厌氧氨氧化与反硝化耦合反应的影响,提出了当前研究存在的问题,展望了未来研究的重点。 相似文献