共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
为了解决多主体图像分割的交互分割问题,提出了一种基于SLIC超像素的自适应图像分割算法。首先利用SLIC对图像进行超像素分割处理,把原图像分割为大小相似、形状规则的超像素,以超像素中心点的五维特征值作为原始数据点通过自适应参数的DBSCAN算法聚类,确定多主体数目和分割边界。算法不需要用户交互,自适应确定分割数目。为了验证算法的有效性,在伯克利大学标准数据集BSDS500上与人工标注的分割图像进行比较,前期的超像素处理使算法在时间上有很好的提升,对于一幅481×321像素的图像,只需要1.5 s就可以获得结果。实验结果表明,该方法可以有效解决多主体图像分割中的人工交互问题,同时在PRI和VOI的指数对比上也优于传统算法,本文算法可以在保证分割效果的基础上自适应确定分割数目,提高分割效率。 相似文献
3.
4.
陈孝如黄泽武 《电脑编程技巧与维护》2023,(5):144-147
针对当前图像语义分割Deeplab v3+模型浅层特征分辨率低、遗漏分割等问题,引入全卷积神经网络(FCNN),并在此基础上联合超像素分割实现对物体边缘特殊优势、粗糙分割结果的优化,采用空洞卷积设计多尺度特征融合模块,以提升图像空间信息利用率。为提高网络学习能力与网络性能,引入跳跃连接结构和两个损失函数,经过训练测试,证实该算法具有良好的像素精度,可提升分割准确率提高,鲁棒性强,可改善遗漏分割与错误分割。 相似文献
5.
6.
基于超像素分割和多方法融合的SAR图像变化检测方法 总被引:1,自引:0,他引:1
针对基于像素的合成孔径雷达(Synthetic Aperture Radar,SAR)图像变化检测会造成虚警较高、结果破碎的问题,提出一种基于超像素分割和多方法融合的SAR图像变化检测方法。首先引入基于简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)的超像素分割方法,通过对主辅图像进行联合分割,得到符合实际地物边界的超像素分割结果;同时,利用3种基于像素的变化检测方法获取初始变化检测结果;接着,利用超像素分割结果和初始变化检测结果进行两个层次的众数投票,去除检测结果中由于噪声引起的虚警和连通域中的孔洞。选取两个时相的苏州Radarsat-2单极化SAR图像开展变化检测实验,实验结果表明该算法在保持较高检测率和有效边界的基础上,能够显著降低虚警。 相似文献
7.
8.
面向医学图像分割的超像素U-Net网络设计 总被引:1,自引:0,他引:1
近年来,超像素在医学图像处理领域的应用愈加广泛,现有的方法取得了较好的效果,如LAW,SLIC等.然而,这些方法在处理医学图像得到超像素时,位于组织边缘像素点的划分仍存在类别模糊问题.为此,提出一种基于U-Net网络的超像素分割方法.首先,通过双边滤波模型过滤外部噪声,增强超像素信息;然后,结合U-Net卷积网络学习图像特征.该方法为U-Net网络中每个特征尺度的卷积层后嵌入一个规范层,用于增强网络对参数的敏感性.实验结果表明,该方法有效提高了医学图像超像素的分割精度,与groundtruth相比,其改善了超像素边缘分类的准确性,优化了超像素分割结果,在精确度、召回率、F-measure和分割速度等性能指标上均取得了更好的效果. 相似文献
9.
提出了一种交互式的快速图像分割方法. 该方法通过使用高斯超像素来构建Graph cuts模型以实现加速. 首先, 利用融合了边缘置信度的快速均值漂移算法, 将原始图像高效地预分割为多个具有准确边界的同质区域, 并将这些区域描述为超像素, 用于构建精简的加权图. 然后, 使用区域的彩色高斯统计对超像素进行特征描述, 并在信息论空间中对高斯距离度量进行设计. 另外, 为了准确而精炼地对先验知识进行参数化学习, 本文还使用了分量形式的期望最大化混合高斯(Component-wise expectation-maximization for Gaussian mixtures, CEMGM)算法对用户交互进行聚类. 最后, 在改进的加权图模型中应用Graph cuts方法, 获得最终的分割结果. 通过使用不同的彩色图像进行分割实验比较, 仿真结果表明本文的方法在准确性和高效性方面都具有很好的性能. 相似文献
10.
11.
高压输电线路通道环境对高压线路的安全性影响重大,以往都是采用人工对高压输电线路通道环境进行巡检,人工检测作业危险,效率低,难度大.因此,本文提出基于超像素和深度神经网络的航拍高压输电线路环境检测的方法.首先,采用无人机对高压输电线路通道环境航拍,将视频图像进行拼接,得到通道环境的整体图像,然后使用超像素分割算法实现图像的预分割, SURF描述子具有速度快、特性鲁棒性好,因此本文采用SURF描述子提取超像素特征向量,最后采用DNN模型对提取的超像素特征进行训练,对待检测的超像素块进行分类,从而达到检测的目的.通过本算法的应用,电力部门提高了无人机巡视特高压输电通道环境的巡检效率且验证了本算法的有效性. 相似文献
12.
13.
空气中的尘埃、污染物及气溶胶粒子的存在严重影响了大气预测的有效性,毫米波雷达云图的有效分割成为了解决这一问题的关键.本文提出了一种基于超像素分析的全卷积神经网路FCN和深度卷积神经网络CNN(FCN-CNN)的云图分割方法.首先通过超像素分析对云图每个像素点的近邻域实现相应的聚类,同时将云图输入到不同步长的全卷积神经网络FCN32s和FCN8s中实现云图的预分割;FCN32s预测结果中的\"非云\"区域一定是云图中的部分\"非云\"区域,FCN8s预测结果中的\"云\"区域一定是云图中的部分\"云\"区域;剩下不确定的区域通过深度卷积神经网络CNN进行进一步分析.为提高效率,FCN-CNN选取了不确定区域中超像素的几个关键像素来代表超像素区域的特征,通过CNN网络来判断关键像素是\"云\"或者是\"非云\".实验结果表明,FCN-CNN的精度与MR-CNN、SP-CNN相当,但是速度相比于MR-CNN提高了880倍,相比于SP-CNN提高了1.657倍. 相似文献
14.
为了提高自然图像显著性检测准确度,提出一种基于区域合并的图像显著性检测算法.该算法直接通过区域合并的方式逐渐将图像从初始状态下的多个区域合并为显著性对象和背景2个区域.在合并过程的不同阶段采用了不同的合并策略,首先利用超像素分割方法将图像分为若干初始区域,在第一阶段仅合并相似且相邻的区域,使得属于同一对象的像素合并到同一区域;然后,处理上述过程中产生的空洞以及因遮挡造成的属于同一对象的区域不相邻的情况;再在区域显著分析的引导下,不断将显著性最差的区域合并到背景区域,而不是尝试将显著性区域合并到一起.最后利用合并过程中得到的多个候选显著性区域加权得到最终的显著性区域结果.在2个公开测试集上进行了测试并与其他算法进行了对比,实验结果证明了文中算法的有效性;特别是在难度更大的ECSSD数据集中,该算法的准确度要优于同类算法. 相似文献
15.
针对 RGB-D 图像具有丰富的三维几何特征,复杂度高这一具有挑战性的难题,提出一种针对室内场景RGB-D 图像的分割算法.首先,经过 RGB-D 图像过分割生成超像素,并基于超像素之间的距离度量测量超像素之间的相似性;然后,采用 DBSCAN 算法将具有相似的颜色信息和几何信息的超像素聚类到一个分类中.在该聚类过程中,通过限制扩散区域来降低计算复杂度.在室内场景 RGB-D 图像库上大量实验结果表明,文中算法分割精确度和速率均超过了其他算法,证明了其高效性和准确性. 相似文献
16.
目的 基于阈值的分割方法能根据像素的信息将图像划分为同类的区域,其中常用的最大模糊相关分割方法,因能利用模糊相关度量划分的适当性,得到较好的分割结果,而广受关注。然而该算法存在划分数需预先确定,阈值的分割结果存在孤立噪声,无法对彩色图像实施分割的问题。为此,提出基于模糊相关图割的非监督层次化分割策略来解决该问题。方法 算法首先将图像划分为若干超像素,以提高层次化图像分割的效率;随后将快速模糊相关算法与图割结合,构成模糊相关图割2-划分算子,在确保分割效率的基础上,解决单一阈值分割存在孤立噪声的问题;最后设计了自顶向下层次化分割策略,利用构建的2-划分算子选择合适的区域及通道,迭代地对超像素实施层次化分割,直到算法收敛,划分数自动确定。结果 对Berkeley分割数据库上300幅图像进行了测试,结果表明算法能有效分割彩色图像,分割精度优于Ncut、JSEG方法,运行时间较这两种方法也提高了近20%。结论 本文算法为最大模糊相关算法在非监督彩色图像分割领域的应用提供指导依据,能用于目标检测和识别领域。 相似文献
17.
针对高分遥感影像中存在地物数目多,特征信息复杂导致分割边缘不清晰、对象细节丢失等问题,提出一种改进的超像素分割和多特征结合的遥感影像分割合并算法。在对图像进行分割前的预处理阶段,使用超像素分割技术得到初始分割图像;区域合并过程中,基于对象间的异质性和对象内部的同质性,结合光谱、纹理和形状特征,对对象进行合并;通过调整全局分割参数来调整合并尺度,得到最终的影像分割结果。实验结果表明,所提方法能得到较好的影像分割效果。 相似文献
18.
目的 传统图像聚类算法多利用像元的光谱信息,较少考虑图像的空间信息,容易受到噪声干扰。针对该问题,提出一种整合超像元分割(SLIC)和峰值密度(DP)的高光谱图像聚类算法。方法 首先,利用超像元分割技术对高光谱图像进行分割并提取超像元光谱特征;然后,根据提取的超像元光谱特征,计算其峰值密度信息,搜索超像元光谱簇,构建像元与类别间的隶属度关系。最后,利用高光谱模拟数据以及两组真实高光谱图像评价算法的鲁棒性和精度。结果 在不同信噪比的模拟数据中,SLIC-DP算法在调整芮氏指标(ARI)最优的条件下,较K-means和SLIC-Kmeans的方差降低61.86%和41.61%,体现优越的鲁棒性。在高光谱数据集Salinas-A和Indian Pines中,SLIC-DP算法的ARI为0.777 1和0.325 7,较K-Means和SLIC-KMeans聚类算法分别增长10.71%,5.01%与78.86%,25.27%。结论 本文算法抗噪声能力强,充分利用空间信息与光谱信息,有效提升高光谱图像聚类精度。经验证,能满足高光谱图像信息提取和分析的要求,可进一步推广和研究。 相似文献
19.
图像分割是从图像中提取有意义的区域,是图像处理和计算机视觉中的关键技术。而自动分割方法不能很好地处理前景复杂的图像,对此提出一种基于区域中心的交互式图像前景提取算法。针对图像前景的复杂度,很难用单一的相似区域描述前景,文中采用多个区域中心来刻画目标区域。为提升图像分割的稳定性,给出基于超像素颜色、空间位置和纹理信息的相似性度量方法;为确保图像分割区域的连通性和准确性,定义了基于超像素的测地距离计算方法。使用基于测地距离的超像素局部密度,来分析图像的若干区域中心;基于用户交互的方式来分析前景的区域中心,得到图像前景。经过大量彩色图像的仿真表明,在分割过程中利用少量的用户交互信息,可有效提升图像分割的稳定性和准确性。 相似文献
20.
提高复杂背景及噪声干扰文本图像的文本分割性能是文本识别研究中的重要问题和难点,为更好地解决这一难题,提出一种基于超像素融合的文本分割方法。首先对文本图像初始二值化,并估计文本笔画宽度;然后进行图像超像素分割并融合;最后利用超像素融合的局部相似性对初始二值化图像进行文本校验。实验结果表明,与最大稳定极值区域(MSER)及笔画超像素聚合(SSG)方法相比,所提方法在KAIST数据集上的分割精度分别提高了8.00个百分点和7.00个百分点,在ICDAR2003数据集上的文字识别率分别提高了5.33个百分点和4.88个百分点。所提方法具有较强的去噪能力。 相似文献