首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
为满足桌面环境下的手势交互需求,研究一种将手指数目、指间距及指间夹角特征相结合的桌面静态手势识别方法。以提高手势识别率、降低识别难度为目标,根据指间距及指间角度特征进行手势建模。利用分层策略将手势识别分为两层,将多种类手势识别转化到每层下较少种类的识别,根据每层的识别结果作为判别依据共同完成手势识别任务。实验结果表明,在常规桌面背景下,该方法比普通的模板匹配方法具有更高的识别准确率。  相似文献   

2.
传统手势识别通过提取手势轮廓或关节点位置来进行手势分类识别,这些特征通常在多角度因素下难以准确地表征正确的手势信息,从而导致识别率下降.为了解决目前手势识别在多角度因素导致识别准确率下降的问题,该文提出一种融合HOG(方向梯度直方图)特征和手部多特征的手势识别方法.在特征提取中,首先对处理后的手势图像提取HOG特征并使...  相似文献   

3.
手势识别是人机交互领域的一种重要手段,针对手势形态多样性和背景的复杂性导致识别率不高的问题,提出一种融合HOG+SVM的手势识别方法,该方法有效提高手势识别率。首先建立手势样本数据集,选择轮廓信息完整的手势图像作为模板,为了验证分割的高效性,采集6类手势的6,000张样本,提取两种局部二值模式特征和一种方向梯度直方图,对形态学处理后手势样本集提取HOG特征并进行降维处理,目的是提高手势识别速度,然后对手势轮廓和质心位置提取不同形态手势多特征信息,对两种特征进行归一化处理,精确地对手势信息进行识别,得到不同形态手势的特征,将最终的手势分类特征通过SVM进行分类识别。实验结果表明,本文提出的手势识别方法在复杂环境下识别率达到95%,具有较强的鲁棒性,满足人机交互的需求。  相似文献   

4.
作为人机交互的重要方式,手势交互和识别由于其具有的高自由度而成为计算机图形学、虚拟现实与人机交互等领域的研究热点.传统直接提取手势轮廓或手部关节点位置信息的手势识别方法,其提取的特征通常难以准确表示手势之间的区别.针对手势识别中不同手势具有的高自由度以及由于手势图像分辨率低、背景杂乱、手被遮挡、手指形状尺寸不同、个体差异性导致手势特征表示不准确等问题,本文提出了一种新的融合关节旋转特征和指尖距离特征的手势特征表示与手势识别方法.首先从手势深度图中利用手部模板并将手部看成链段结构提取手部20个关节点的3D位置信息;然后利用手部关节点位置信息提取四元数关节旋转特征和指尖距离特征,该表示构成了手势特征的内在表示;最后利用一对一支持向量机对手势进行有效识别分类.本文不仅提出了一种新的手势特征表示与提取方法,该表示融合了关节旋转信息和指尖距离特征;而且从理论上证明了该特征表示能唯一地表征手势关节点的位置信息;同时提出了基于一对一SVM多分类策略进行手势分类与识别.对ASTAR静态手势深度图数据集中8类中国数字手势和21类美国字母手势数据集分别进行了实验验证,其分类识别准确率分别为99.71%和85.24%.实验结果表明,本文提出的基于关节旋转特征和指尖距离特征的融合特征能很好地表示不同手势的几何特征,能准确地表征静态手势并进行手势识别.  相似文献   

5.
针对静态手势识别问题,提出了一种综合考虑局部形状与全局轮廓的隐马尔科夫模型(HMM)静态手势识别算法。该算法提取局部形状熵特征与上层轮廓特征分别作为训练数据训练每类手势的HMM参数。测试时,先凭借局部形状熵特征得出初步识别结果,然后根据初步识别结果的模糊性,附加与局部特征互补的上层轮廓特征进行再识别,得出最终识别结果。实验结果表明,该算法对于形状差异占主导地位的手势库有很好的效果,并且将静态手势的空间序列模拟成时间序列使得静态手势识别具有空间尺度不变性;同时该算法合理控制特征维数,一定程度上弱化了HMM训练时间长的弊端,加快了识别的速度。  相似文献   

6.
传统基于手部轮廓或手部运动轨迹的动态手势识别方法,其提取的特征通常难以准确表示动态手势之间的区别.针对动态手势的复杂时序、空间可变性、特征表示不准确等问题,提出一种融合手势全局运动和手指局部运动的手势识别方法.首先进行动态手势数据预处理,包括去除手势无效帧、手势帧数据补全和关节长度归一化;然后根据给定的手部关节坐标,利用手势距离函数分段提取动态手势关键帧,并基于手势关键帧提取手在空间中的全局运动特征和手内部手指的局部运动特征;其次融合手势全局运动和手指局部运动的关键帧手势特征,并采用线性判别分析进行特征降维;最后利用带高斯核的支持向量机实现动态手势识别与分类.对DHG-14/28动态手势数据集中14类手势和28类手势数据集进行实验,其分类识别准确率分别为98.57%和88.29%,比现有方法分别提高11.27%和4.89%.实验结果表明,该方法能准确地表征动态手势并进行手势识别.  相似文献   

7.
为了能够提升视频技术下车辆检测的正确率,论文提出结合使用HOG特征与SIFT特征作为车辆检测的特征提取算法,再通过支持向量机(SVM)将样本数据划分为训练集与验证集,使用不同核函数进行训练和验证,确定最优核函数为高斯核函数.最后将训练的模型使用到视频文件进行车辆的预测.最终,实验数据表明,该方法提升了传统的HOG+SV...  相似文献   

8.
手势识别是人机交互领域的研究热点,由于受环境、角度等因素的影响,采用单一特征无法很好地识别手势,故文中提出了一种基于指尖和HOG特征结合的手势识别方法.通过YCrCb椭圆肤色空间分割出手部区域,采用串行融合方法将手势指尖特征和手部HOG特征相结合,最后将结合的特征送入支持向量机进行手势识别.实验表明,该方法在不同样本集...  相似文献   

9.
选取Hu不变矩、手势轮廓的凹陷个数及其周长与面积比为手势识别的主要特征,采用了基于径向基核的SVM分类器进行0~9十种手势的识别。实验结果表明,在背景单一、光照情况良好条件下,该方法具有很高的识别率,并且简单快速。  相似文献   

10.
基于LSSVM的静态手势识别   总被引:2,自引:0,他引:2  
段洪伟  陈一民  林锋 《计算机工程与设计》2004,25(12):2352-2353,2368
支持向量机(Support Vector Machine,简称SVM),是基于统计学习理论的一种新的模式识别方法,较好地解决了小样本学习问题。通过使非线性空间变换为线性空间,降低了算法的复杂性。LSSVM(Least Squares Support Vector Machine)由于使用线性等式代替了标准的SVM算法中的线性不等式,进一步降低了运算量。利用傅立叶描述子获取静态手势特征向量,通过LSSVM大尺度算法求解方程组来得到LSSVM分类器,进行静态手势识别,取得了较高的识别率。说明如何把静态手势识别结果应用到机器人远程控制中,提高人机交互的友好性。  相似文献   

11.
A hand gesture recognition method is presented for human-computer interaction,which is based on fingertip localization. First,hand gesture is segmented from the background based on skin color characteristics. Second,feature vectors are selected with equal intervals on the boundary of the gesture,and then gestures' length normalization is accomplished. Third,the fingertip positions are determined by the feature vectors' parameters,and angles of feature vectors are normalized. Finally the gestures are classif...  相似文献   

12.
Gesture recognition is an important research in the field of human-computer interaction. Hand Gestures are strong variable and flexible, so the gesture recognition has always been an important challenge for the researchers. In this paper, we first outlined the development of gestures recognition, and different classification of gestures based on different purposes. Then we respectively introduced common methods used in the process of gesture segmentation, feature extraction and recognition. Finally, the gesture recognition was summarized and the studying prospects were given.  相似文献   

13.
基于手势识别的人机交互发展研究   总被引:1,自引:1,他引:1  
近年来手势识别技术的快速发展,基于手势识别技术的人机交互应用系统的建立使得人机交互的发展前景广阔.从手形、手势和手形手势的建模出发,介绍了模板匹配、特征提取、神经网络和隐马尔可夫模型4种手势识别的方法,并且综述了基于手势识别技术人机交互的发展,详细介绍了3类人机交互系统:漫游型系统、编辑型系统和操作型系统.  相似文献   

14.
基于视觉的手势识别技术   总被引:1,自引:0,他引:1  
近年来计算机已经成为人们日常生活的一部分,人们与计算机的交互也日益成为科研领域的热点。基于视觉的手势识别是实现新一代人机交互所不可缺少的一项关键技术,而手势识别的研究也可促进手语识别的发展,从而消除健全人与聋哑人之间的交流障碍,使他们能获得健全人的正常生活,帮忙他们参加社会的各项活动。文中介绍了手势识别方法的发展、手势识别的技术难点,具体阐述了基于视觉的手势识别系统原理和组成,手势的建模以及在手势识别中常用的技术方法。  相似文献   

15.
基于Kinect深度信息的手势提取与识别研究   总被引:3,自引:0,他引:3  
针对基于视觉的手势识别技术对环境背景要求较高的问题,提出了一种使用深度信息进行手势提取和识别的研究方案。采用了微软Kinect摄像头进行手势深度图的采集,再将深度图转换为三维点云,根据深度信息过滤来提取手势数据。对手势数据进行方向校正后统计手势数据中深度信息的区间分布特征并输入到支持向量机进行训练,从而实现了对数字手势1~5的手势识别。实验结果证明,该手势识别方案的平均识别率达到95%,使用设备简单且精度较高,鲁棒性较好。  相似文献   

16.
张维  林泽一  程坚  柯铭雨  邓小明  王宏安 《软件学报》2021,32(10):3051-3067
近年来,手势作为一种输入通道,已在人机交互、虚拟现实等领域得到了广泛的应用,引起了研究者的关注.特别是随着先进人机交互技术的出现以及计算机技术(特别是深度学习、GPU并行计算等)的飞速发展,手势理解和交互方法取得了突破性的成果,引发了研究的热潮.综述了动态手势理解与交互的研究进展与典型应用:首先阐述手势交互的核心概念,...  相似文献   

17.
针对基于普通摄像头的手势识别系统在不同光照条件和复杂环境下易受影响的问题,提出一种基于kinect深度图像进行指尖检测和手势识别的算法. 首先利用Kinect传感器获取深度图像,再利用OpenNI手部跟踪器检测出手部的位置,根据手部位置对手势进行深度阈值分割. 提出一种结合凸包和曲率检测指尖的算法,检测出指尖数目和位置后,计算出包括指尖和手掌水平方向的夹角、相邻两个指尖夹角以及指尖与掌心的距离的特征向量,最后利用支持向量机(SVM)对预定的9种数字手势进行识别. 实验邀请5位实验者在复杂环境下每个手势做30次,每次的手势角度不同,实验结果表明该方法能够准确检测出指尖的数目和位置,9种数字手势平均识别率达到97.1%,该方法使用特征简单,实时性好,有较好的鲁棒性.  相似文献   

18.
文章提出了一种基于视觉的投影交互方法,通过判断用户手指与其在屏幕上投射阴影的融合程度来检测投影屏幕上是否有触控事件发生。为提升系统的鲁棒性,在检测阶段,将手指与其阴影同时从相机图像中分割出来,进而采用一种线性模型判断方法来判定手指与其阴影的融合程度,如果判定触碰事件发生,则通过指尖位置检测来判断触控的具体位置。该方法不需要用户使用任何辅助工具,即可用手指在投影屏幕上直接与显示画面实现交互操作。  相似文献   

19.
基于OPENCV的手势识别系统的设计与实现   总被引:1,自引:0,他引:1       下载免费PDF全文
人与计算机的交互技术是一种新型的计算机技术,且逐渐演变为一种主流技术和计算机领域的技术热点;为了能够更好地识别手势和跟踪手势的运动轨迹,提出了基于OPENCV的手势识别系统,系统引入了OPENCV计算机视觉库,OPENCV作为优秀的计算机视觉库,为设计的实现提供了便捷的代码,利用OPENCV技术中的图像处理算法,首现通过摄像头采集数据图像,并对采集到的图像进行一系列的缩放,去噪以及锐化等处理,然后对人体手势建立肤色模型,然后经过灰度阈值化来转换成二值图像,得到手轮廓的数据图像后,采用轮廓匹配方法识别出手型;最后通过10种基本的手势模型对比验证了本系统具有一定的实时性,并且识别率可以达到95%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号