共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统的图像分类方法对整个图像不分等级处理以及缺乏高层认知的问题,提出了一种基于显著性检测的图像分类方法。首先,利用视觉注意模型进行显著性检测,得到图像的显著区域;然后,利用Gabor滤波方法和脉冲耦合神经网络模型,分别提取该显著区域的纹理特征和时间签名特征;最后,根据提取的纹理特征和时间签名特征,利用支持向量机实现图像分类。实验结果表明,所提方法在SIMPLIcity图像数据集上平均分类正确率达到94.26%,在Caltech数据集上平均分类正确率为95.43%,从而证明,显著性检测与有效的特征提取对图像分类有重要影响。 相似文献
2.
目的 青光眼是导致失明的主要疾病之一,视盘区域的形状、大小等参数是青光眼临床诊断的重要指标。然而眼底图像通常亮度低、对比度弱,且眼底结构复杂,各组织以及病灶干扰严重。为解决上述问题,实现视盘的精确检测,提出一种视觉显著性的眼底图像视盘检测方法。 方法 首先,依据视盘区域显著的特点,采用一种基于视觉显著性的方法对视盘区域进行定位;其次,采用全卷积神经网络(fully convolutional neural network,FCN)预训练模型提取深度特征,同时计算视盘区域的平均灰度,进而提取颜色特征;最后,将深度特征、视盘区域的颜色特征和背景先验信息融合到单层元胞自动机(single-layer cellular automata,SCA)中迭代演化,实现眼底图像视盘区域的精确检测。 结果 在视网膜图像公开数据集DRISHTI-GS、MESSIDOR和DRIONS-DB上对本文算法进行实验验证,平均相似度系数分别为0.965 8、0.961 6和0.971 1;杰卡德系数分别为0.934 1、0.922 4和0.937 6;召回率系数分别为0.964 8、0.958 9和0.967 4;准确度系数分别为0.996 6、0.995 3和0.996 8,在3个数据集上均可精确地检测视盘区域。实验结果表明,本文算法精确度高,鲁棒性强,运算速度快。 结论 本文算法能够有效克服眼底图像亮度低、对比度弱及血管、病灶等组织干扰的影响,在多个视网膜图像公开数据集上进行验证均取得了较好的检测结果,具有较强的泛化性,可以实现视盘区域的精确检测。 相似文献
3.
Saliency detection has been researched a lot in recent years. Traditional methods are mostly conducted and evaluated on conventional RGB images. Few work has considered the incorporation of multi-spectral clues. Considering the success of including near-infrared spectrum in applications such as face recognition and scene categorization, this paper presents a multi-spectral dataset and applies it in saliency detection. Experiments demonstrate that the incorporation of near-infrared band is effective in the saliency detection procedure. We also test the combinational models for integrating visible and near-infrared bands. Results show that there is no single model to effect on every saliency detection method. Models should be selected according to the specific employed method. 相似文献
4.
针对现有多视角学习算法在构建近邻图时缺乏数据自适应性问题,提出一种自适应多视角学习(AMVL)算法。该算法首先利用L1范数具有自动数据样本选择的特性,对不同视角分别构建有向的L1图;然后根据得到的L1图,最小化各个视角下的低维重建误差;最后对不同视角间进行多视角全局坐标对齐,得到自适应多视角学习算法的目标函数。此外,还提出一种迭代优化求解方法来对所提目标函数进行优化求解。将该算法应用到图像分类问题,在Corel5K和NUS-WIDE-OBJECT两个公共图像数据集上与现有算法进行对比。实验结果表明:所提方法在这两个数据集上可以分别提高最高5%和2%的分类准确率;优化求解算法可以保证在100次迭代内收敛;算法所得到的近邻数目具有数据自适应性。 相似文献
5.
Accurate segmentation of apple fruit under natural illumination conditions provides benefits for growers to plan relevant applications of nutrients and pesticides. It also plays an important role for monitoring the growth status of the fruit. However, the segmentation of apples throughout various growth stages had only achieved a limited success so far due to the color changes of apple fruit as it matures as well as occlusion and the non-uniform background of apple images acquired in an orchard environment. To achieve the segmentation of apples with different colors and with various illumination conditions for the whole growth stage, a segmentation method independent of color was investigated. Features, including saliency and contour of the image, were combined in this algorithm to remove background and extract apples. Saliency using natural statistics (SUN) visual attention model was used for background removal and it was combined with threshold segmentation algorithm to extract salient binary region of apple images. The centroids of the obtained salient binary region were then extracted as initial seed points. Image sharpening, globalized probability of boundary-oriented watershed transform-ultrametric contour map (gPb-OWT-UCM) and Otsu algorithms were applied to detect saliency contours of images. With the built seed points and extracted saliency contours, a region growing algorithm was performed to accurately segment apples by retaining as many fruit pixels and removing as many background pixels as possible. A total of 556 apple images captured in natural conditions were used to evaluate the effectiveness of the proposed method. An average segmentation error (SE), false positive rate (FPR), false negative rate (FNR) and overlap Index (OI) of 8.4, 0.8, 7.5 and 90.5% respectively, were achieved and the performance of the proposed method outperformed other six methods in comparison. The method developed in this study can provide a more effective way to segment apples with green, red, and partially red colors without changing any features and parameters and therefore it is also applicable for monitoring the growth status of apples. 相似文献
6.
有效的视觉显著性方法能准确快速地帮助人们在大量视觉信息中找到感兴趣的物体.针对实际路面图像噪声成分复杂、覆盖面广的特点,提出一种基于图像显著性的路面裂缝检测算法.该算法对路面裂缝图像分块灰度校正后,根据灰度稀疏性、全局对比度计算粗尺度下的裂缝显著值,然后由裂缝局部亮度、边缘特性、连续性特点进行不断扩张的细尺度的局部邻域显著性增强,再经空间显著性加强后,采用自适应阈值分割提取裂缝.大量的实验结果表明,该算法比传统算法更能正确、有效地检测出裂缝整体区域,抗噪声能力强,漏检率和误检率很低,具有和人类视觉特性相符合的检测结果. 相似文献
7.
The aim of salient feature detection is to find distinctive local events in images. Salient features are generally determined from the local differential structure of images. They focus on the shape-saliency of the local neighborhood. The majority of these detectors are luminance-based, which has the disadvantage that the distinctiveness of the local color information is completely ignored in determining salient image features. To fully exploit the possibilities of salient point detection in color images, color distinctiveness should be taken into account in addition to shape distinctiveness. In this paper, color distinctiveness is explicitly incorporated into the design of saliency detection. The algorithm, called color saliency boosting, is based on an analysis of the statistics of color image derivatives. Color saliency boosting is designed as a generic method easily adaptable to existing feature detectors. Results show that substantial improvements in information content are acquired by targeting color salient features. 相似文献
8.
图像显著性检测在目标识别、目标跟踪、视觉信息挖掘等研究中具有重要价值,而水下图像研究又是海洋相关学科的基础。文章针对水下图像特性,提出一种结合Retinex图像增强和超像素分割算法的多尺度显著性区域检测方法,以获取均匀、清晰的显著图。在每个尺度上进行超像素显著性估计和贝叶斯概率估计,将不同尺度的显著图进行加权求和与导向滤波,得到平滑且边缘清晰的显著图。根据水下不同倍数的衰减距离建立数据集,验证了该算法具有较强的鲁棒性。 相似文献
9.
人类视觉系统能够通过对场景中感兴趣的不同事物进行显著性检测,有效地配置处理资源。基于视觉注意机制的显著性检测方法能够简化遥感影像场景分析、目标解译的复杂程度,节省处理资源。以视觉注意机制为基础,提出了一种尺度自适应的SAR图像显著性检测方法,通过不同尺度下的局部复杂度和自差异性来度量图像的显著性测度,设计显著性尺度确定算法以及融合显著性尺度和显著性测度以生成显著图,完成显著性检测的流程。实验结果表明该方法能够有效应用于SAR图像显著性检测,较之其他主流显著区域检测算法更适用于SAR图像场景分析。 相似文献
10.
从图像梯度分类的概率模型出发,提出一种自动确定Canny算法阈值的新方法。通过实验表明,这种改进的Canny算法是有效的,性能优于传统Canny算法。 相似文献
11.
针对已有的图像序列放大方法存在空间运动目标放大后细节不清晰的问题,提出基于视觉显著性的图像序列放大算法。算法首先采用视觉显著性技术获取空间运动目标区域;而后设计不同的放大策略;最后提出分区插值计算和区域能量保护方法,提升放大过程中的空间运动目标清晰度。与已有的放大算法对比的实验结果表明,提出的算法取得了更好的视觉效果和更高的平均梯度指标值、边缘强度指标值、信息熵指标值和图像功率谱指标值。 相似文献
12.
为了能够准确地检测出图像中的显著性对象,提出了一种新的基于视觉显著性图与似物性的对象检测算法。该算法首先在图像上提取大量具有较高似物性度量的矩形窗口,并估算出对象可能出现的位置,将窗口级的似物性度量转换到像素级的似物性度量;然后把原始显著性图与像素级的似物性图进行融合,生成加权显著性图,分别二值化原始显著性图和加权显著性图,利用凸包检测得到最大查找窗口区域与种子窗口区域;最后结合边缘概率密度搜索出最优的对象窗口。在公开数据集MSRA-B上的实验结果表明,该算法在准确率、召回率以及F-测度方面优于最大化显著区域检测算法、区域密度最大化算法以及似物性对象检测算法等已有的多种算法。 相似文献
13.
Visual saliency detection plays a significant role in the fields of computer vision. In this paper, we introduce a novel saliency detection method based on weighted linear multiple kernel learning (WLMKL) framework, which is able to adaptively combine different contrast measurements in a supervised manner. As most influential factor is contrast operation in bottom-up visual saliency, an average weighted corner-surround contrast (AWCSC) is first designed to measure local visual saliency. Combined with common-used center-surrounding contrast (CESC) and global contrast (GC), three types of contrast operations are fed into our WLMKL framework to produce the final saliency map. We show that the assigned weights for each contrast feature maps are always normalized in our WLMKL formulation. In addition, the proposed approach benefits from the advantages of the contribution of each individual contrast feature maps, yielding more robust and accurate saliency maps. We evaluated our method for two main visual saliency detection tasks: human fixed eye prediction and salient object detection. The extensive experimental results show the effectiveness of the proposed model, and demonstrate the integration is superior than individual subcomponent. 相似文献
14.
音视显著性检测方法采用的双流网络结构,在音视信号不一致时,双流网络的音频信息对视频信息产生负面影响,削弱物体的视觉特征;另外,传统融合方式忽视了特征属性的重要程度。针对双流网络的问题进行研究,提出了一种基于视觉信息补偿的多流音视显著性算法(MSAVIC)。首先,在双流网络的基础上增加单独的视频编码分支,保留视频信号中完整的物体外观和运动信息。其次,利用特征融合策略将视频编码特征与音视频显著性特征相结合,增强视觉信息的表达,实现音视不一致情况下对视觉信息的补偿。理论分析和实验结果表明,MSAVIC在四个数据集上超过其他方法2%左右,在显著性检测方面具有较好的效果。 相似文献
15.
结合视觉显著区检测的特点,本文提出一种面向视觉注意区域检测的运动分割方法。该方法用一种层次聚类方法将特征点的运动轨迹进行聚类。首先用中值偏移算法扩大了不同类型运动之间特征向量的差距,同时缩小了相同运动类型的差别。继而,用一种无监督聚类算法,将不同类型的运动进行分割,同时自动获得运动分类数。最后利用运动分割结果,提出一种结合空间和颜色采样的运动显著区域生成方法。与以往方法相比,该方法能够将不同类型的运动自动进行分割,生成的视觉注意区域更为准确,而且稳定性大幅提高。实验结果证明了该方法的有效性和稳定性。 相似文献
16.
提出了一种无监督的提取图像中显著区域的彩色图像分割算法。首先,运用mean shift算法对图像进行分割,得到初始的分割结果;然后,根据给出的区域显著性的定义和区域合并策略,对初始分割结果进行合并,得到最终的分割结果。仿真结果表明,对于大多数测试图像,该算法都能获得很好的分割结果,并且具有较高的运行效率。 相似文献
17.
A novel successive learning algorithm based on a Test Feature Classifier is proposed for efficient handling of sequentially provided training data. The fundamental characteristics of the successive learning are considered. In the learning, after recognition of a set of unknown data by a classifier, they are fed into the classifier in order to obtain a modified performance. An efficient algorithm is proposed for the incremental definition of prime tests which are irreducible combinations of features and capable of classifying training patterns into correct classes. Four strategies for addition of training patterns are investigated with respect to their precision and performance using real pattern data. A real-world problem of classification of defects on wafer images has been dealt with by the proposed classifier, obtaining excellent performance even through efficient addition strategies. 相似文献
18.
针对图像显著区域检测区域轮廓不明确,抗噪能力弱的问题,提出一种基于分块对比的多尺度图像显著区域检测。该方法以Itti模型为基础,在多尺度下提取图像特征以更全面地表现图像的总体特征;以图像块为单位计算图像的局部对比度作为图像的显著值;用自适应阈值法从显著图中提取显著区域。仿真实验结果表明,该方法能够准确地提取图像的显著性区域,使区域具有明确的边界。 相似文献
19.
Saliency detection mimics the natural visual attention mechanism that identifies an imagery region to be salient when it attracts visual attention more than the background. This image analysis task covers many important applications in several fields such as military science, ocean research, resources exploration, disaster and land-use monitoring tasks. Despite hundreds of models have been proposed for saliency detection in colour images, there is still a large room for improving saliency detection performances in hyperspectral imaging analysis. In the present study, an ensemble learning methodology for saliency detection in hyperspectral imagery datasets is presented. It enhances saliency assignments yielded through a robust colour-based technique with new saliency information extracted by taking advantage of the abundance of spectral information on multiple hyperspectral images. The experiments performed with the proposed methodology provide encouraging results, also compared to several competitors. 相似文献
20.
Multimedia Tools and Applications - With the advent of stereo camera saliency object detection for RGB-D image is attracting more and more interest. Most existing algorithms treat RGB-D image as... 相似文献
|