首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saxiphilin is a soluble protein of unknown function which binds the neurotoxin, saxitoxin (STX), with high affinity. Molecular characterization of saxiphilin from the North American bullfrog, Rana catesbeiana, has previously shown that it is a member of the transferrin family. In this study we surveyed various animal species to investigate the phylogenetic distribution of saxiphilin, as detected by the presence of soluble [3H]STX binding activity in plasma, haemolymph or tissue extracts. We found that saxiphilin activity is readily detectable in a wide variety of arthropods, fish, amphibians, and reptiles. The pharmacological characteristics of [3H]STX binding activity in phylogenetically diverse species indicates that a protein homologous to bullfrog saxiphilin is likely to be constitutively expressed in many ectothermic animals. The results suggest that the saxiphilin gene is evolutionarily as old as an ancestral gene encoding bilobed transferrin, an Fe(2+)-binding and transport protein which has been identified in several arthropods and all the vertebrates which have been studied.  相似文献   

2.
Using sheep cerebellum microsomes adsorbed on a filter, we measured the kinetics of [3H]inositol 1,4,5-trisphosphate (InsP3) binding and dissociation on the subsecond time scale during rapid perfusion of the filter with [3H]InsP3-containing or InsP3-free media. At 20 degrees C and pH 7.1, in a cytosol-like medium containing MgCl2, the half-time for InsP3 dissociation was as short as 125 ms. The receptor behaved as a simple target for binding of its ligand, with the rate constant for InsP3 binding increasing linearly with InsP3 concentration. Various modulators of InsP3 binding (KCl, NaCl, pH, Mg2+, and Ca2+) were found to affect the receptor's apparent affinity for InsP3 mainly by altering the rate constant for [3H]InsP3 dissociation. ATP (but not InsP3) also accelerated [3H]InsP3 dissociation. In contrast to these modulators, luminal Ca2+ was found to have no effect on the amount of microsome-bound [3H]InsP3.  相似文献   

3.
Clostridium difficile radiolabelled toxin A ([3H]-toxin A) bound to human duodenal and colonic epithelial cells isolated from endoscopic biopsies. Binding was greater at 4 degrees C than 37 degrees C, consistent with the thermal binding characteristic of toxin A to a carbohydrate moiety. At 37 degrees C colonic cells bound significantly more [3H]-toxin A than duodenal cells. The amount of [3H]-toxin A binding varied considerably between individuals. [3H]-toxin A was displaced by unlabelled toxin A by 50% for duodenal cells and 70% for colonic cells with 94.3 nM unlabelled toxin A. Low non-displacable binding was observed in some samples at 4 degrees C and 37 degrees C, suggesting that these cells came from individuals incapable of specifically binding toxin. Pre-treating cells with alpha- or beta-galactosidases to cleave terminal alpha- and beta-galactose residues reduced [3H]-toxin A binding. There was also a reduction in [3H]-toxin A binding after heat treating cells, which is suggestive of protein binding. The reduction in binding varied between individuals. The reduction of [3H]-toxin A binding, after the removal of beta-linked galactose units, implicates these as components of the receptor and adds credence to the idea that the Lewis X, Y and I antigens may be involved in toxin A binding to human intestinal epithelial cells. However, because the Lewis antigens do not possess terminal alpha-galactose units, the reduction in binding after alpha-galactosidase treatment suggests that other receptors may be involved in toxin A binding to some human intestinal cells. These data are the first demonstration of direct toxin A binding to human intestinal epithelial cells.  相似文献   

4.
The interaction between SH2 domains and tyrosine-phosphorylated proteins is essential in several cytosolic signal transduction pathways. Here we report thermodynamic studies of the interaction of the p56lck (lck) SH2 domain with several phosphopeptides, using the technique of isothermal titration calorimetry (ITC). This is the first report of the use of ITC to study SH2 domain binding reactions. The free energy of binding of the SH2 domain of lck to a phosphopeptide corresponding to the autoregulatory C-terminus of the protein (pY505) was found to be similar to that measured for a phosphopeptide modeled on the C-terminus of the epidermal growth-factor receptor (delta G degrees approximately -7.0 kcal mol-1 at pH 6.8), although significant differences in the enthalpy and entropy were observed. Binding of a phosphopeptide modeled on the C-terminus of p185neu was weaker (delta G degrees approximately -5.4 kcal mol-1 at pH 6.8). Lowering the pH to 5.5 reduced the binding affinity of pY505 by approximately 1 order of magnitude. We ascribe this to the protonation of a histidine side chain in the SH2 domain (H180), which is involved in a hydrogen-bonding network that optimizes the binding site geometry. No difference in affinity was observed between portions of lck corresponding to the SH3-SH2 (residues 63-228) and SH2 (residues 123-228) domains for the pY505 peptide. We also studied the effect upon pY505 peptide binding of mutations at two highly conserved arginine residues in the lck SH2 domain (R134 and R154).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Both high and low affinity binding sites for [3H]ryanodine exist in sarcoplasmic reticulum membranes derived from rabbit skeletal muscle. Negatively cooperative binding of [3H]ryanodine at one of four initially identical sites cannot account for some of the kinetic features of the binding to high and low affinity sites. The presence of excess unlabeled ryanodine greatly slows the rate at which [3H]ryanodine bound at the high affinity site dissociates. An examination of the rate of dissociation of [3H]ryanodine bound at increasing [3H]ryanodine concentrations reveals the existence of a second site, occupied only at high ligand concentrations. The occupation of this site correlates well with the conversion of the high affinity site from a site with a dissociation rate constant of approximately 0.0025 min-1 to one with a dissociation rate constant of less than 0.00025 min-1. The low affinity site itself has a dissociation rate constant of 0.013 min-1 and dissociation from this site is unaffected by the presence of 100 microM unlabeled ryanodine. These data suggest that the two binding sites are different but are either allosterically or sterically coupled. Association experiments support this interpretation. Low affinity binding sites for [3H]ryanodine exist in transverse tubule (t-tubule) as well as sarcoplasmic reticulum membranes. High concentrations of both ryanodine and ruthenium red inhibit the binding of [3H]PN200-110 to the dihydropyridine-binding protein in t-tubule membranes. Whether the low affinity site in t-tubule membranes is related to that found in sarcoplasmic reticulum membranes is not yet known.  相似文献   

6.
The thermotropic properties of triolein-rich, low-cholesterol dipalmitoyl phosphatidylcholine (DPPC) emulsion particles with well-defined chemical compositions (approximately 88% triolein, 1% cholesterol, 11% diacyl phosphatidylcholine) and particle size distributions (mean diameter, approximately 1000-1100 A) were studied in the absence and presence of apolipoprotein-A1 by a combination of differential scanning and titration calorimetry. The results are compared to egg yolk PC emulsions of similar composition and size. Isothermal titration calorimetry at 30 degrees C was used to saturate the emulsion surface with apo-A1 and rapidly quantitate the binding constants (affinity Ka = 11.1 +/- 3.5 x 10(6) M-1 and capacity N = 1.0 +/- 0.09 apo-A1 per 1000 DPPC) and heats of binding (enthalpy H = -940 +/- 35 kcal mol-1 apo-A1 or -0.92 +/- 0.12 kcal mol-1 DPPC). The entropy of association is -3070 cal deg-1 mol-1 protein or -3 cal deg-1 mol-1 DPPC. Without protein on the surface, the differential scanning calorimetry heating curve of the emulsion showed three endothermic transitions at 24.3 degrees C, 33.0 degrees C, and 40.0 degrees C with a combined enthalpy of 1.53 +/- 0.2 kcal mol-1 DPPC. With apo-A1 on the surface, the heating curve showed the three transitions more clearly, in particular, the second transition became more prominent by significant increases in both the calorimetric and Van't Hoff enthalpies. The combined enthalpy was 2.70 +/- 0.12 kcal mol-1 DPPC and remained constant upon repeated heating and cooling. Indicating that the newly formed DPPC emulsion-Apo-A1 complex is thermally reversible during calorimetry. Thus there is an increase in delta H of 1.17 kcal mol-1 DPPC after apo-A1 is bound, which is roughly balanced by the heat released during binding (-0.92 kcal) of apo-A1. The melting entropy increase, +3.8 cal deg-1 mol-1 DPPC of the three transitions after apo-A1 binds, also roughly balances the entropy (-3 cal deg-1 mol-1 DPPC) of association of apo-A1. These changes indicate that apo-A1 increases the amount of ordered gel-like phase on the surface of DPPC emulsions when added at 30 degrees C. From the stoichiometry of the emulsions we calculate that the mean area of DPPC at the triolein/DPPC interface is 54.5 A2 at 41 degrees C and 54.2 A2 at 30 degrees C. The binding of apo-A1 at 30 degrees C to the emulsion reduces the surface area per DPPC molecule from 54.2 A2 to 50.8 A2. At 30 degrees apo-A1 binds with high affinity and low capacity to the surface of DPPC emulsions and increases the packing density of the lipid domain to which it binds. Apo-A1 was also titrated onto DPPC emulsions at 45 degrees C. This temperature is above the gel liquid crystal transition. No heat was released or adsorbed. Furthermore, egg yolk phosphatidylcholine emulsions of nearly identical composition were also titrated at 30 degrees C with apo-A1 and were euthermic. Association constants were previously measured using a classical centrifugation assay and were used to calculate the entropy of apo-A1 binding (+28 cal deg-1 mol-1 apo-A1). This value indicates that apo-A1 binding to a fluid surface like egg yolk phosphatidylcholine or probably DPPC at 45 degrees C is hydrophobic and is consistent with hydrocarbon lipid or protein moities coming together and excluding water. Thus the binding of apo-A1 to partly crystalline surfaces is entropically negative and increases the order of the already partly ordered phases, whereas binding to liquid surfaces is mainly an entropically driven hydrophobic process.  相似文献   

7.
Differential scanning calorimetry and absorption spectroscopy were used to characterize the interaction of the new bisintercalating anthracycline antibiotic, WP631, with DNA. The method of continuous variations revealed five distinct binding modes for WP631, corresponding to 6, 3, 1.3, 0.5, and 0.25 mol of base pairs (bp) per mole of ligand. The binding of one drug to 6 bp corresponds to the bisintercalative binding mode determined previously, and was the mode studied in detail. UV melting experiments and differential scanning calorimetry were used to measure the ultratight binding of WP631 to DNA. The binding constant for the interaction of WP631 with herring sperm DNA was determined to be 3.1 (+/- 0.2) x 10(11) M-1 at 20 degrees C. The large, favorable binding free energy of -15.3 kcal mol-1 was found to result from a large, negative enthalpic contribution of -30.2 kcal mol-1. DNA melting curves at different concentrations of WP631 were fitted to McGhee's model of DNA melting in the presence of ligands, yielding an independent estimate of DNA binding parameters. The salt dependence of the WP631 binding constant was examined, yielding a slope SK = delta (log K)/delta (log[Na+]) = 1.63. The observed salt dependence of the equilibrium constant, interpreted according to polyelectrolyte theory, indicates that there is a significant nonpolyelectrolyte contribution to the binding free energy. DNA melting studies using a homogeneous 214 bp DNA fragment showed that WP631 binds preferentially to the GC-rich region of the DNA.  相似文献   

8.
The modification of [3H]nitrendipine binding sites in rabbit brain membranes with 2,3-butanedione and diethylpyrocarbonate was investigated. 2,3-Butanedione, an arginine-specific reagent, causes a dose- and time-dependent decrease in the number of [3H]nitrendipine binding sites without altering its dissociation constant. Scatchard analysis of the binding data shows that 50 mM 2,3-butanedione decreases the binding capacity of [3H]nitrendipine from a control value of 71 +/- 6 fmol/mg of protein to 40 +/- 3 fmol/mg of protein. Complete and selective protection against inactivation is provided by nifedipine. No decrease of [3H]nitrendipine binding occurs when membranes are pretreated with selective histidine reagent diethylpyrocarbonate. The results indicate that arginine but not histidine residue in L-type calcium channel domain in critical for [3H]nitrendipine binding.  相似文献   

9.
We have studied the binding of [3H]-NPY and the newly developed non-peptide Y1 receptor antagonist [3H]-BIBP3226 to intact SK-N-MC cells and CHO-K1 cells transfected with the human NPY Y1 receptor gene i.e. CHO-Y1 cells. Whereas the association and dissociation of the specific [3H]-NPY binding was slow, the binding kinetics of [3H]-BIBP3226 binding was very rapid. Saturation binding of both radioligands reveal the presence of an apparently homogeneous population of high affinity binding sites in both cell lines. The corresponding equilibrium dissociation constants are similar for the two cell lines and are close to those obtained from previous competition binding experiments. The specific binding of both radioligands was completely and with high affinity displaced by BIBP3226 and its inactive (S)-enantiomer BIBP3435 was much less potent. Whilst the NPY Y1 agonists NPY, PYY and [Leu31-Pro34]-NPY completely and potently displaced [3H]-NPY binding, they could only displace 70 to 80% of the [3H]-BIBP3226 binding sites in CHO-Y1 and SK-N-MC cells. A possible explanation can be that only part of the receptors are G-protein coupled. In agreement pertussis toxin was found to reduce high affinity [3H]-NPY binding sites in CHO-Y1 cells whereas [3H]-BIBP3226 binding parameters remained unchanged.  相似文献   

10.
Isothermal titration calorimetry (ITC) measurements were performed on the binding of alpha methyl-D-mannopyranoside, D-mannopyranose, alpha methyl-D-glucopyranoside, and D-glucopyranose (Glu) to cobalt, nickel, and cadmium substituted concanavalin A (Con A) derivatives at pH = 6.9 and at 25 degrees C. The metal substituted Con A derivatives consisted of Co2+, Ni2+, and Cd2+ substituted for the Mn2+ ion in the S1 site of Con A which is about 12.8 A away from the center of the carbohydrate binding site of Con A. The thermodynamic quantities determined from the ITC measurements were the same for most of the binding reactions indicating that the structure of the binding site in solution is the same for all the Con A derivatives in solution and that the presence of different 2+ metal ions in the S1 site has little effect on the binding reactions. Differential scanning calorimetry scans of solutions of the metal ion derivatives of Con A show that the thermodynamics of the unfolding transition for the cobalt and nickel substituted derivatives are the same as for Con A: they dissociate from tetramers into monomers as they unfold around 85 degrees C. The cadmium substituted Con A derivative, however, exhibits an additional transition around 93 degrees C which also appears following the addition of Cd2+ to the Con A solutions. This transition results from the unfolding of a species of Con A with Cd2+ substituted into a third binding site at the monomeric interface of the Con A tetramer. The higher stability of this species is not only exemplified by the higher thermal transition temperature but also by the lack of dissociation as it unfolds. Cd2+ is released from the S3 site upon decreasing the pH from 6.9 to 6.4. ITC measurements on the binding reaction of Cd2+ to Con A show that the binding enthalpy is 40.2 +/- 0.4 kJ mol-1 at 23.4 +/- 0.2 degrees C and the binding reaction exhibits a large heat capacity change of 1.43 +/- 0.41 kJ mol-1 K-1.  相似文献   

11.
1. SB-204269 (trans-(+)-6-acetyl-4S-(4-fluorobenzoylamino)-3, 4-dihydro-2,2-dimethyl-2H-benzol[b]pyran-3R-ol, hemihydrate) shows potent anticonvulsant activity in a range of animal seizure models, with a lack of neurological or cardiovascular side-effects. The profile of the compound suggests that it may have a novel mechanism of action. This study describes the characteristics of a binding site for [3H]-SB-204269 in rat forebrain membranes. 2. Specific [3H]-SB-204269 binding was saturable and analysis indicated binding to a homogenoeous population of non-interacting binding sites with a dissociation constant (KD) of 32 +/- 1 nM and a maximum binding capacity (Bmax) of 253 +/- 18 fmol mg-1 protein. Kinetic studies indicated monophasic association and dissociation. Binding was similar in HEPES or Tris-HCl buffers and was unaffected by Na+, K+, Ca2+ or Mg2+ ions. Specific binding was widely distributed in brain, but was minimal in a range of peripheral tissues. 3. Specific [3H]-SB-204269 binding was highly stereoselective, with a 1000 fold difference between the affinities of SB-204269 and its enantiomer SB-204268 for the binding site. The affinities of analogues of SB-204269 for binding can be related to their activities in the mouse maximal electroshock seizure threshold (MEST) test of anticonvulsant action. 4. None of the standard anticonvulsant drugs, phenobarbitone, phenytoin, sodium valproate, carbamazepine, diazepam and ethosuximide, or the newer anticonvulsants, lamotrigine, vigabatrin, gabapentin and levetiracetam, showed any affinity for the [3H]-SB-204269 binding site. A wide range of drugs active at amino acid receptors, Na+ or K+ channels or various other receptors did not demonstrate any affinity for the binding site. 5. These studies indicate that SB-204269 possesses a specific CNS binding site which may mediate its anticonvulsant activity. This binding site does not appear to be directly related to the sites of action of other known anticonvulsant agents, but may have an important role in regulating neuronal excitability.  相似文献   

12.
The increased frequency and distribution of red tides requires the development of high-throughput detection methods for paralytic shellfish toxins (PST). Community ethics also requires that there be a reduced reliance upon the standard mouse bioassay. A biomolecular assay such as the sodium channel 3H-saxitoxin binding assay can satisfy both of these requirements but may be compromised by cross-reactivity with the structurally unrelated tetrodotoxins (TTX). This study utilised the sodium channel assay but also an alternative 3H-saxitoxin binding assay based upon a saxiphilin isoform from the centipede Ethmostigmus rubripes to screen for PSTs. Saxiphilin is a novel transferrin which binds saxitoxin (STX) but differs from the sodium channel in not having any measurable affinity for TTX. A detailed analysis of toxin composition was achieved by high performance liquid chromatography (HPLC). Various crustaceans and molluscs accumulate PSTs and TTX, thus proving useful biomarkers for these toxins in their immediate environment and an ideal challenge to the detection and analysis of PSTs in this presumptive screening program. Also, there has been little investigation of PSTs in invertebrates from the Indian Ocean so this region was selected to extend our knowledge of the distribution of these toxins. 190 crabs and shellfish encompassing 31 species were collected from reefs along the North-West Australian coast and tested for PSTs and TTX by sodium channel and saxiphilin bioassays as well as HPLC. PSTs were detected in 18 species of crabs and shellfish of the 31 species tested. Eight of these species have not been previously described as toxic, these being the crabs Euzanthus exsculptus, Lophozozymus octodentatus, Metopograpsus frontalis, Pilumnus pulcher, Platypodia pseudogranulosa and Portunus pelagicus, and the molluscs Tectus fenestratus and Trochus hanleyanus. By HPLC, only one or both of STX and decarbamoyl-STX was detected in any extract. Some extracts markedly inhibited 3H-saxitoxin binding by the sodium channel but not by saxiphilin. The close agreement between toxin quantification by the PST specific methods of HPLC and the saxiphilin bioassay is indicative that the additional toxicity detected by the sodium channel assay is TTX.  相似文献   

13.
Conformational transitions of cytochrome P-450cam following the dissociation of CO from the ferrous heme were investigated by using photoacoustic calorimetry. The effect of substrate association on the acoustic signal was also examined. Results show that the conformational dynamics of cytochrome P-450cam substrate-free protein occur faster than 10 ns, which is the time scale of the instrument response. The enthalpy and volume change for the dissociation reaction are 2.2 kcal mol-1 and 1.8 mL mol-1, respectively. Upon addition of camphor, the reaction is markedly slowed. An intermediate is formed whose lifetime is 130 ns at 17 degrees C. The overall enthalpy and volume changes are -15.9 kcal mol-1 and 10.3 mL mol-1, respectively. These results, together with published transient Raman spectra [Wells, A. V., Pusheng, L., Champion, P. M., Martinis, S. A., & Sligar, S. G. (1992) Biochemistry 31, 4384-4393] suggest that camphor leaves the heme pocket concomitant with the photoinduced expulsion of CO into the solvent and induces a considerable conformational change in the protein.  相似文献   

14.
The nitrogenase iron (Fe) protein binds two molecules of MgATP or MgADP, which results in protein conformational changes that are important for subsequent steps of the nitrogenase reaction mechanism. In the present work, isothermal titration calorimetry has been used to deconvolute the apparent binding constants (K'a1 and K'a2) and the thermodynamic terms (delta H' degree and delta S' degree) for each of the two binding events of MgATP or MgADP to either the reduced or oxidized states of the Fe protein from Azotobacter vinelandii. The Fe protein was found to bind two nucleotides with positive cooperativity and the oxidation state of the [4Fe-4S] cluster of the Fe protein was found to influence the affinity for binding nucleotides, with the oxidized ([4Fe-4S]2+) state having up to a 15-fold higher affinity for nucleotides when compared to the reduced ([4Fe-4S]1+) state. The first nucleotide binding reaction was found to be driven by a large favorable entropy change (delta S' degree = 10-21 cal mol-1 K-1), with a less favorable or unfavorable enthalpy change (delta H' degree = +1.5 to -3.3 kcal mol-1). In contrast, the second nucleotide binding reaction was found to be driven by a favorable change in enthalpy (delta H' degree = -3.1 to -13.0 kcal mol-1), with generally less favorable entropy changes. A plot of the associated enthalpy (-delta H' degree) and entropy terms (-T delta S' degree) for each nucleotide and protein binding reaction revealed a linear relationship with a slope of 1.12, consistent with strong enthalpy-entropy compensation. These results indicate that the binding of the first nucleotide to the nitrogenase Fe protein results in structural changes accompanied by the reorganization of bound water molecules, whereas the second nucleotide binding reaction appears to result in much smaller structural changes and is probably largely driven by bonding interactions. Evidence is presented that the total free energy change (delta G' degree) derived from the binding of two nucleotides to the Fe protein accounts for the total change in the midpoint potential of the [4Fe-4S] cluster.  相似文献   

15.
To explore target sites for endogenous D-serine that are different from the glycine site of the N-methyl-D-aspartate (NMDA) type glutamate receptor, we have studied the binding of D-[3H]serine to the synaptosomal P2 fraction prepared from the rat brain and peripheral tissues in the presence of an excess concentration (100 microM) of the glycine site antagonist 5,7-dichlorokynurenate (DCK). Nonspecific binding was defined in the presence of 1 mM unlabeled D-serine. Association, dissociation, and saturation experiments indicated that D-[3H]serine bound rapidly and reversibly to a single population of recognition sites in the cerebellar P2 fraction in the presence of DCK, with a K(D) of 614 nM and a Bmax of 2.07 pmol/mg of protein. D-Serine, L-serine, and glycine produced a total inhibition of the specific DCK-insensitive D-[3H]serine binding to the cerebellum with similar Ki values. Strychnine and 7-chlorokynurenate failed to inhibit the binding at 10 microM. The profiles of displacement of the DCK-insensitive D-[3H]serine binding by various amino acids and glutamate and glycine receptor-related compounds differ from those of any other defined recognition sites. DCK-insensitive D-[3H]serine binding was at high levels in the cerebral cortex and cerebellum but very low in the kidney and liver. The present findings indicate that the DCK-insensitive D-[3H]serine binding site could be a novel candidate for a target for endogenous D-serine in mammalian brains.  相似文献   

16.
The essential active site Fe3+ of protocatechuate 3,4-dioxygenase [3, 4-PCD, subunit structure (alphabetaFe3+)12] is bound by axial ligands, Tyr447 (147beta) and His462 (162beta), and equatorial ligands, Tyr408 (108beta), His460 (160beta), and a solvent OH- (Wat827). Recent X-ray crystallographic studies have shown that Tyr447 is dissociated from the Fe3+ in the anaerobic 3,4-PCD complex with protocatechuate (PCA) [Orville, A. M., Lipscomb, J. D., and Ohlendorf, D. H. (1997) Biochemistry 36, 10052-10066]. The importance of Tyr447 to catalysis is investigated here by site-directed mutation of this residue to His (Y447H), the first such mutation reported for an aromatic ring cleavage dioxygenase containing Fe3+. The crystal structure of Y447H (2.1 A resolution, R-factor of 0.181) is essentially unchanged from that of the native enzyme outside of the active site region. The side chain position of His447 is stabilized by a His447(N)delta1-Pro448(O) hydrogen bond, placing the Nepsilon2 atom of His447 out of bonding distance of the iron ( approximately 4.3 A). Wat827 appears to be replaced by a CO32-, thereby retaining the overall charge neutrality and coordination number of the Fe3+ center. Quantitative metal and amino acid analysis shows that Y447H binds Fe3+ in approximately 10 of the 12 active sites of 3,4-PCD, but its kcat is nearly 600-fold lower than that of the native enzyme. Single-turnover kinetic analysis of the Y447H-catalyzed reaction reveals that slow substrate binding accounts for the decreased kcat. Three new kinetically competent intermediates in this process are revealed. Similarly, the product dissociation from Y447H is slow and occurs in two resolved steps, including a previously unreported intermediate. The final E.PCA complex (ES4) and the putative E.product complex (ESO2*) are found to have optical spectra that are indistinguishable from those of the analogous intermediates of the wild-type enzyme cycle, while all of the other observed intermediates have novel spectra. Once the E.S complex is formed, reaction with O2 is fast. These results suggest that dissociation of Tyr447 occurs during turnover of 3,4-PCD and is important in the substrate binding and product release processes. Once Tyr447 is removed from the Fe3+ in the final E.PCA complex by either dissociation or mutagenesis, the O2 attack and insertion steps proceed efficiently, suggesting that Tyr447 does not have a large role in this phase of the reaction. This study demonstrates a novel role for Tyr in a biological system and allows evaluation and refinement of the proposed Fe3+ dioxygenase mechanism.  相似文献   

17.
The A2a-adenosine binding subunit from rabbit striatal membranes was solubilized using 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and was characterized using the antagonist radioligand [3H]8-[4-[[[[2-aminoethyl)amino]carbonyl]methyl]oxy] phenyl]-1,3-dipropylxanthine (XAC). The solubilized receptor was very stable, with 55% of the specific [3H]XAC binding remaining after storage for 15 days at 4 degrees C. The dissociation constant (Kd) for binding of [3H]XAC to solubilized A2 receptors was determined in saturation studies to be 4.0 nM, with a Bmax of 600 fmol/mg protein. Xanthine inhibitors displaced the specific binding of the adenosine antagonist [3H]XAC (in the presence of 50 nM 8-cyclopentyl-1,3-dipropylxanthine) at 25 degrees C, with Ki values consonant with the expected affinities at A2a receptors. Binding of [3H]XAC (1 nM) or the adenosine agonist [3H]2-(carboxyethylphenylethylamino)adenosine-5'-N-ethyl carboxamide (5 nM) to A2a receptors was diminished in the presence of 0.1 M Na+ in both membranes and solubilized preparations. Agonist binding was increased (by 280% for membranes and 180% for solubilized receptors), and antagonist binding was decreased in the presence of 10 mM Mg2+. Displacement of [3H]XAC by the agonist (R)-N6-phenylisopropyladenosine was biphasic, corresponding to high (IC50 = 188 nM, RH = 30%) and low (IC50 = 9730 nM, RL = 70%) affinity sites. Preincubation with 100 microM GTP (10 mM Mg2+) converted the high affinity binding to low affinity, suggesting that receptor and G-protein are dissociated by the guanine nucleotide. The solubilized receptor was more easily inactivated by exposure to the reducing agent dithiothreitol (IC50 = 3 mM) than in membranes (IC50 = 220 mM), suggesting increased accessibility of structurally essential disulfide bridges.  相似文献   

18.
A method allowing measurement of the concentration of [3H]ryanodine binding sites in small skeletal muscle specimens (> 10-20 mg) was developed. A membrane fraction containing 87% of the [3H]ryanodine binding sites of the tissue and exhibiting one single KD of 18-27 nmol l-1 in rat and 8 nmol l-1 in human muscles (p < 0.05) was obtained. Maximum binding to rat EDL and soleus muscles equalled 59.1 and 16.2 pmol g-1 wet wt, whereas in human gluteus muscles binding was 12.3 pmol g-1 wet wt. The [3H]ryanodine binding showed a dependency on Mg2+ and pH similar to previously published results. As measured by Ca2+ selective mini-electrodes, the [Ca2+] causing 50% of maximum [3H]ryanodine binding (K0.5) was 200-400 nmol l-1 for different muscles. [Ca2+] higher than 1 mmol l-1 caused strong inhibition of the [3H]ryanodine binding, and both high and low [Ca2+] caused rapid dissociation of the complex. At ionic strength lower than 100 mmol l-1, more than 50% of the [3H]ryanodine was bound to particles with size less than 1.2 microns which were not retained by GF/C filters. Thus, we have obtained an almost complete quantitative recovery of functional RyRs from small muscle specimens exhibiting high affinity for Ca2+, which stimulated ligand binding.  相似文献   

19.
The actions of potent mammalian neurotoxins isolated from the venom of two Australian funnel-web spiders were investigated using both electrophysiological and neurochemical techniques. Whole-cell patch clamp recording of sodium currents in rat dorsal root ganglion neurons revealed that versutoxin (VTX), isolated from the venom of Hadronyche versuta, produced a concentration-dependent slowing or removal of tetrodotoxin-sensitive (TTX-S) sodium current inactivation and a reduction in peak TTX-S sodium current. In contrast, VTX had no effect on tetrodotoxin-resistant (TTX-R) sodium currents or potassium currents. VTX also shifted the voltage dependence of sodium channel activation in the hyperpolarizing direction and increased the rate of recovery from inactivation. Ion flux studies performed in rat brain synaptosomes also revealed that robustoxin (RTX), from the venom of Atrax robustus, and VTX both produced a partial activation of 22Na+ flux and an inhibition of batrachotoxin-activated 22Na+ flux. This inhibition of flux through batrachotoxin-activated channels was not due to an interaction with neurotoxin receptor site 1 since [3H]saxitoxin binding was unaffected. In addition, the partial activation of 22Na+ flux was not enhanced in the presence of alpha-scorpion toxin and further experiments suggest that VTX also enhances [3H]batrachotoxin binding. These selective actions of funnel-web spider toxins on sodium channel function are comparable to those of alpha-scorpion and sea anemone toxins which bind to neurotoxin receptor site 3 on the channel to slow channel inactivation profoundly. Also, these modifications of sodium channel gating and kinetics are consistent with actions of the spider toxins to produce repetitive firing of action potentials.  相似文献   

20.
Resealed human red cell membranes, ghosts, bind oleate (OL) by a limited number of sites when equilibrated at 37 degrees C, pH 7.3 with OL bound to bovine serum albumin (BSA) in molar ratios below 1.5. The binding capacity is 34 +/- 2.2 nmol g-1 ghosts with a dissociation equilibrium constant (37 degrees C) Kdm 1.38 +/- 0.15 fold Kd of albumin binding Kdm is temperature independent and approximately 7-8 nM. Exchange efflux kinetics at 0 degrees C to buffers of various albumin concentrations ([BSAy]) is biexponential and is analysed in terms of a three-compartment model. Accordingly the ratio of inner to outer membrane leaflet binding sites is 0.450 +/- 0.018 and the rate constant of unidirectional flux from inside to outside is 0.067 +/- 0.01 s-1. The rate constant of flux from the extracellular side of the membrane to BSAy increases with the square root of [BSAy] as expected of an unstirred layer effect. This provides an estimate of the dissociation rate constant of OL-BSA complex at 0 degrees C of 0.0063 +/- 0.0003 s-1. Exchange efflux from ghosts containing four different [BSAi] obeys the expected kinetics of a three-compartment approximation of the theoretical model. Accounting for the effect of an unstirred fluid inside ghosts, the rate coefficients fit the values predicted by the parameters obtained by the studies of albumin-free ghosts. The results show that the OL transport across the membrane is mediated exclusively by the asymmetrically distributed binding sites. The differences between transport sites of three long-chain fatty acids suggest that they are protein determined microdomains of phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号