首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
Gas phase polymerization of butadiene by neodymium catalyst was modeled. The effects of mass and heat transfer resistances in the external boundary layer and within particles, sorption of butadiene in polybutadiene,and deactivation of active sites on polymer particle growth and morphology were studied. Simulation results show that the effects of intraparticle mass and heat transfer resistances on the growth rate of polymer particles are insignificant, and that there is no significant effect of mass transfer resistance on the morphology of polymer particles.The simulation results were compared with the experimental results.  相似文献   

2.
The surface morphology of Ti-Mg supported catalyst and the polyethylene particles are studied using scanning electron microscope(SEM) technology.The results show that either the catalyst‘s surface or polymer particle‘s surface is irregular and has fractal characteristics,which can be described by fractal parameter.The more interesting discovery is that the surface fractal dimension values of the polymer particles vary periodically with the polymerization time.We call this phenomenon fractal evolution,which can be divided into the “revolution“ stage and the “evolution“ stage,And then we present polymerization fractal growing model(PFGM),and successfully describe and /or predict the whole evolving process of the polyethylene particle morphology under the different slurry polymerization(including pre-polymerization) conditions without H2.  相似文献   

3.
The study of the kinetics of gas phase polymerization of butadiene with heterogeneous catalyst based on neodymium(Nd) was carried out.The effects of reaction temperature,reaction pressure,dispersing medium, and types of catalyst on kinetics of polymerization were investigated .A kinetic model with two kinds of active sites was proposed.The results show that the effects of the reaction temperature and the types of dispersing medium and catalyst on the kinetic performance of polymerization are significant,and that the combined model of first and second order decay of active site of catalyst can be used to describe the phenomena.  相似文献   

4.
The study of the kinetics of gas phase polymerization of butadiene with heterogeneous catalyst based on neodymium (Nd) was carried out. The effects of reaction temperature, reaction pressure, dispersing medium, and types of catalyst on kinetics of polymerization were investigated. A kinetic model with two kinds of active sites was proposed. The results show that the effects of the reaction temperature and the types of dispersing medium and catalyst on the kinetic performance of polymerization are significant, and that the combined model of first and second order decay of active site of catalyst can be used to describe the phenomena.  相似文献   

5.
改进的催化剂的乙烯聚合动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene. In particular, two types of catalysts were investigated, which were N-catalyst (BRICI) and improved polyethylene catalyst. The effects of catalyst structure on kinetic behavior were examined. The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays (EDAX), and morphologies of catalyst particles and polymer products were examined by scanning electron microscope (SEM). Hydrogen response and copolymerization performance were investigated and compared with the two catalysts. The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented. The improved polyethylene catalyst showed higher activity, better hydrogen response and copolymerization performance.  相似文献   

6.
The effects of reduction procedure, reaction temperature and composition of feed gas on the activity of a CuO-ZnO-Al2O3 catalyst for liquid phase methanol synthesis were studied. An optimized procedure different from conventional ones was developed to obtain higher activity and better stability of the catalyst. Both CO and CO2 in the feed gas were found to be necessary to maintain the activity of catalyst in the synthesis process. Reaction temperature was limited up to 523K, otherwise the catalyst will be deactivated rapidly. Experimental results show that the catalyst deactivation is caused by sintering and fouling, and the effects of CO and CO2 on the catalyst activity are also investigated. The experimental results indicate that the formation of water in the methanol synthesis is negligible when the feed gas contains both CO and CO2. The mechanism for liquid-phase methanol synthesis was discussed and it differed slightly from that for gas-phase synthesis.  相似文献   

7.
The absorption of low concentration SO2 in flue gas by using the module of liquid-containing microporous membrane which is made up of hollow fiber and citric acid-sodium citrate buffer solution was investigated. The absorption efficiency of hydrophilic and hydrophobic membranes by using the concept of dynamic contact angle was mainly studied. The influences on absorption efficiency from absorption time, flowrate of gas phase, SO2 concentration of gas phase, air pressure, citrate concentration, pH value of solution as well as the generation of sulfate radical in absorption solution were examined. The results indicate that the hydrophobic hollow fiber membrane is better than hydrophilic membrane, the absorption efficiency decreases with increasing absorption time, gas phase flowrate, gas phase SO2 concentration and air pressure, the absorption rate and capacity of SO2 can be improved by increasing the citrate concentration, the absorption efficiency can be improved by increasing the pH value of citrate solution, the concentration of SO42- in absorption solution increases linearly with the absorption time at a rate around 0.192 g/(L×h).  相似文献   

8.
Sand production often leads to the failure of production equipment on offshore platform. Therefore, a new idea has been put forward, which is installing cyclone or baffle in the internal of the slug catcher for better sand control. In this paper, an experimental study is presented, which mainly includes sand particles accumulation shape, migration law and separation performance. The results suggest that the accumulation area is mainly divided into two zones: the crowded settlement zone and the free settlement zone. The crowded settlement zone has a special shape, which can be characterized by two parameters: accumulation length and accumulation angle. Axial sampling analysis shows obvious particle classification. Median particle size decreases with the increase of the axial distance, and the range of particle size distribution narrows gradually. The separation experiment shows that the gas velocity has the greatest influence on the separation efficiency. When the gas velocity is 14 m·s~(-1), the separation efficiency drops sharply, which can be abated by installing cyclone separator. In addition, the separation efficiency tends to be a constant under different gas velocities by installing baffle with appropriate height.Then the effectiveness and rationality of installing internal components can be strongly proved. All these provide important guidance for maximizing the sand control function of the slug catcher.  相似文献   

9.
The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.  相似文献   

10.
丙烯聚合的Monte Carlo模拟(Ⅰ)活性杂质对丙烯聚合的影响   总被引:1,自引:0,他引:1  
1 INTRODUCTION Polypropylene is a popular thermoplastic polymer, and produced via bulk polymerization in petroleum chemical industry. The molecular configuration of polypropylene and the characteristics of polymer can be controlled by the catalyst and polymerization method. Furthermore, other factors, such as impurities in the material and polymerization conditions, also influence the industrial production. Catalyst influences the rate and the quality of polymer, is a key factor of the in…  相似文献   

11.
The morphological and kinetic characteristics of novel Ziegler–Natta catalysts were studied. Catalysts were prepared by Borealis Polymers Oy using a new synthesis technique (emulsion technology). Video microscopy was used to study the growth of single catalyst particles during polymerization in the gas and liquid phases. The distribution of single particle activity was very narrow in the catalyst without external support and was rather broad in the the silica‐supported catalyst. Video microscopy of molten polymer particles allowed observation of the process and degree of fragmentation of the catalyst particles. A correlation between the activation period during the initial stage of polymerization and catalyst fragmentation was found. Fragmentation was faster and more uniform with the catalyst without external support than with the silica‐supported catalyst. Scanning electron microscopy provided information on morphology evolution and shape replication of the catalyst particles. With the catalyst without external support, good shape replication was observed, and compact and spherical particles were formed. With the silica‐supported catalyst, shape replication was poor, and nonspherical porous polymer particle were formed. Modeling of the kinetics of propylene polymerization was done using a simple three‐step reaction scheme neglecting mass and heat transport effects. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2191–2200, 2005  相似文献   

12.
对非均相催化的丁二烯气相聚合,基于聚合物多层模型,考虑催化剂颗粒间活性位初始浓度和粒径分布对聚合物分子量分布和粒径分布的影响,建立了聚合物分子量分布和粒径分布的数学模型。模拟了反应温度、催化剂颗粒间活性位初始浓度和粒径分布等因素的影响,结果表明。随着温度升高,聚合物颗粒平均粒径变小,粒径分布变窄,聚合物分子量变小,分子量分布变宽;催化剂颗粒间的活性组分负载越均匀,聚合物分子量越大,分子量分布和粒径分布越窄;随着催化剂平均粒径变大,聚合物分子量变小,分子量分布变宽,不存在催化剂颗粒粒径分布和聚合物颗粒粒径分布间的复制现象。模型模拟结果与实验结果吻合较好,可用于预测丁二烯气相聚合产物的分子量、分子量分布和粒径分布。  相似文献   

13.
This article deals with the development of a model for the polymerization process using a Ziegler‐Natta catalyst in a slurry reactor system. Employed here is the hierarchical model describing the entire reactor system that is subcategoried by the gas bubble phase, the continuous gas phase, the liquid phase, the solid polymer particle, and the surface of catalyst where chemical reaction occurs. The concept of the multigrain model (MGM) is introduced to describe the growth of polymer particle from the original catalyst particle. We also adopt the concept of multiple active sites to elucidate the broad molecular weight distribution (MWD). The major concern here is the effects of the hydrogen concentration and the size of the initial catalyst on the performance of the polymerization reactor. It is demonstrated that the hydrogen gas can be used for the purpose of controlling not only the molecular weight but the molecular weight distribution (MWD) of the polymer. In addition, the relationship between the molecular weight and the concentration of hydrogen gas is investigated. The size of the initial catalyst is found to exercise a significant influence on the morphology of the resultant polymer particle. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2480–2493, 2001  相似文献   

14.
Steady-state population balance models have been developed for a continuous flow gas phase olefin polymerization process with both uniform sized and log-normally size distributed high activity catalyst feeds. For the calculation of polymer properties such as molecular weight averages and weight fraction of comonomers in the copolymer, a multigrain solid core model was used with an assumption that intraparticle monomer mass transfer resistance is negligibly small. The multigrain solid core model was incorporated into the population balance model and the effects of feed catalyst particle size distribution and catalyst deactivation parameters on the polymer production rate, polymer particle size distribution, and polymer properties were investigated. It is observed for deactivating catalyst that the polymer particle size distribution tends to be narrower with a reduced amount of large polymer particles. For the catalyst with nonuniform site deactivation, polymer particles of different sizes exhibit different molecular weight and copolymer composition. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The two‐phase model developed for the UNIPOL polyethylene process is improved by introducing polymer diffusion resistance, this means modelling of polyethylene fluidized bed reactors has been examined on two levels, at small scale of individual polymer particle, and macroscale of the whole reactor. The model utilizes the multigrain model that accounts for the reaction rate at catalyst surface to explore the static and dynamic bifurcation behavior of the fluidized bed catalytic reactor. Detailed bifurcation diagrams are developed and analyzed for the effect of polymer growth factor and Thiele modulus (the significance of the porous medium transport resistance is characterized by Thiele modulus) on reactor dense phase monomer concentration and reactor temperature as well as polyethylene production rate and reactor single pass conversion for the safe temperature region. The observations reveal that significant diffusion resistance to monomer transport exists, and this can mask the intrinsic rate constants of the catalyst. The investigation of polymer growth factor indicates that, the nascent stage of polymerization is highly gas phase diffusion influenced. Intraparticle temperature gradients would appear to be negligible under most normal operating conditions.  相似文献   

16.
The polymerization of ethylene and 1-octene with supported Ziegler-catalysts was investigated with regard to the influence of mass transport of monomers on the kinetics, molecular weight and molecular weight distribution. In the case of the polymerization of ethylene, it was found that for certain conditions of reaction the mass transport of ethylene can influence the kinetics of polymerization respectively the catalyst efficiency strongly. The molecular weight and molecular weight distribution of the polyethylene formed are practically not affected by the conversion as well as particle size of catalyst and polymer. The molecular weight distribution however is affected by the concentration of the catalyst. The polymerization process of ethylene in suspension is distinguished by chemical and physical processes. A continuous chain initiation, for example, is based on the continuous reduction of the catalyst particles to small pieces during the course of polymerization. An apparent chain termination respectively catalyst deactivation can occur when catalyst particles are encapsulated within the growing polymer particles. The polymerization of 1 -octene for similar conditions of reaction gave polymers which were solved completely in the system used. The molecular weight distribution of the polymer formed nevertheless was very broad. This indicates that the mass transport of the monomers through the solid phase of polymer cannot be the main reason for the broad molecular weight distribution of the polymers which are produced by heterogeneous Ziegler-catalysts in suspension.  相似文献   

17.
The initial stages of gas‐phase polymerizations of propylene and ethylene are analyzed using a fixed bed stopped flow reactor. The very early development of particle morphology and polymer properties is analyzed for three different commercial catalyst systems: MgCl2‐ and SiO2‐supported Ziegler–Natta and SiO2‐supported metallocene. It is shown that, depending on the operating conditions, distinct nonuniform catalyst fragmentation patterns can develop, confirming different scenarios described by published fragmentation models. In addition, it is shown that the molecular weight distributions and polymer yields obtained during the very early stages of the polymerization suggest the existence of significant temperature gradients inside the growing polymer particles. Finally, it is shown that the ratio of catalyst to glass beads in the bed can have a pronounced effect on the evolution of the polymerization reaction. This can be interpreted in terms of the significant temperature difference between the polymer particles and the gaseous monomer stream. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

18.
Ethylene polymerizations were conducted in slurry process with a spherical MgCl2‐supported Ziegler–Natta catalyst activated by triethylaluminum, and the morphology of nascent polymer particles was observed by scanning electron microscope. Three kinds of typical microscale morphologies: nodular and rope‐like structures on the external particle surface, and nodular structures in the bulk of the particle were observed. These structures are composed of polyethylene lamellae and amorphous phase filling the space between the lamellae. There is close relation between the polymerization activity and microporosity of the particles. When the activity was higher than 1500 g PE/g Cat, large number of tiny pores appeared in the particles, and rope‐like structures appeared on their surface. Formation of the morphologies can be reasonably explained by models based on multiscale solid structure of the catalyst particle and dynamic interactions among the growing polymer phases. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45679.  相似文献   

19.
研究开发了1种新型的用于乙烯气相聚合反应的环流流化床反应器。通过对工业A催化剂和实验室自制的QCP-01催化剂的乙烯气相聚合反应评价及聚合物产品的颗粒形态等方面的研究,认为环流流化床反应器具有聚合反应平稳、催化剂的聚合活性高、产品粒径分布均匀等特点,是1种具有良好应用前景的新型反应器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号