首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Optical Materials》2014,36(12):2053-2055
The comparative study of the luminescent properties of Al2O3:Ti crystal in comparison with those for undoped Al2O3 crystal counterpart is performed under synchrotron radiation excitation with an energy of 3.7–25 eV. Apart from the main emission band peaked at 725 nm related to the 2E  2T2 radiative transitions of Ti3+ ions, the luminescence of excitons localized around Ti ions in the band peaked at 290 nm and the luminescence of F+–Ti and F–Ti centers in the bands peaked at 325 and 434 nm are also found in the emission spectra of Al2O3:Ti crystal. We show also that the luminescence of Ti3+ ions in Al2O3:Ti crystal can be effectively excited by the luminescence of excitons localized around Ti dopant as well as by the luminescence of F–Ti centers.  相似文献   

2.
Russell JA  Sierra RA 《Applied optics》1996,35(24):4754-4757
A self-injection-seeded, flash-lamp-excited, Q-switched laser oscillator is presented. The laser comprises two resonators that are operated sequentially. The first resonator, which includes all the high insertion loss, damage prone, wavelength tuning, and line-narrowing components, is used to generate the seed signal. The second resonator is a low-loss, Q-switched resonator whose output wavelength and line width are controlled by the seed signal. Output pulses of energy as high as 325 mJ have been obtained that are tunable over a range of the order of 90 nm and with a bandwidth of the order of 0.05 nm.  相似文献   

3.
Gu O H  Zhang Q  Sun Y  Lou Q  Deng P 《Applied optics》1994,33(9):1682-1685
We report, for the first time, to our knowledge, the operation of a tunable Ti:sapphire laser pumped by a third-order Raman XeCl-H(2) laser system at 499 nm with a 60-ns pulse duration. The slope efficiency is 59% for this laser, producing pulses of 20-ns duration. The highest conversion-energy efficiency obtained is 41%, with an output energy of 1.2 mJ. The tuning range for a single set of cavity mirrors is 680-834 nm and is limited mainly by the mirror reflectivity. This study shows that a combined laser system based on a XeCl excimer laser can offer wavelength diversity.  相似文献   

4.
Ti3AlC2/Al2O3 nanopowders were synthesized by the combination of mechanically-induce self-propagating reaction (MSR) of Ti, C, Al and TiO2 powder mixtures and subsequently heat treatment. Effects of high energy milling and heat treatment temperatures on the phase transformation were investigated in detail. X-ray diffraction (XRD) was used to characterize the powders of milled and annealed, respectively. The morphology and microstructure of as fabricated products were also studied by scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS). Results show that TiC, TixAly and Al2O3 transitional phases were formed when the initial powder mixtures were milled for 24 h. The desired Ti3AlC2/Al2O3 nanopowders with high purity were obtained when annealed the as-milled powders at 1100 °C. SEM image confirmed that the as fabricated Ti3AlC2/Al2O3 particles has nanocrystalline layered structural matrix of Ti3AlC2, and the second phase of nanosized Al2O3 disperses uniformly in the Ti3AlC2 matrix.  相似文献   

5.
Mechanochemical processing is a novel technique for the synthesis of nano-sized materials. This research is based on the production of Al2O3–TiB2 nanocomposite powder using mechanochemical processing. For this purpose, a mixture of aluminum, titanium and boron oxide powders was subjected to high energy ball milling. The structural evaluation of powder particles after different milling times was conducted by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that during ball milling the Al/B2O3/Ti reacted with a combustion mode producing Al2O3–TiB2 nanocomposite. In the final stage of milling, the crystallite sizes of Al2O3 and TiB2 were estimated to be less than 50 nm.  相似文献   

6.
Study of the Ti/Al2O3 interface   总被引:3,自引:0,他引:3  
The Ti/Al2O3 (1 ¯1 0 2) interface formation has been investigated by X-ray photoelectron spectroscopy and Auger electron spectroscopy (AES). The results showed that when an active metal titanium was evaporated on to a room-temperature Al2O3 (1 ¯ 1 0 2) surface in ultrahigh vaccum, a Ti/Al2O3 interface region of about 200 nm was formed, and in the first several monolayers of titanium, the titanium was oxidized due to the active oxygen anions on the surface. Therefore, the pure Ti/Al2O3 interface was replaced gradually by a titanium oxides/Al2O3 interface, which has a stronger interaction than the former. The change of shape of the photoemission lines and the shift of binding energy of aluminium, oxygen and titanium with increasing coverage of titanium showed that the formation of the Ti-O bond at the interface is due to titanium transferring its electrons to Al3+ via O2– anions in the Al-O bond, whereby the Al3+ was reduced to metallic aluminium, Al0. The AES intensity profile also proved the existence of the reduced species Al0. This suggests that the reaction layer consists of a multiphasic mixture: the Ti-O type phase, the (Ti, Al)2O3 phase and metallic aluminium phase.  相似文献   

7.
低价硫化铝法从氧化铝直接炭还原制铝的动力学研究   总被引:3,自引:0,他引:3  
低价硫化铝法从氧化铝直接炭还原制铝的动力学过程极为复杂,过程的前期受界面化学反应控制,过程后期受扩散过程控制,并求得不同时期的活化能,反应前期:E1=63.81 kJ/mol(6.67 Pa)、E2=50.82 kJ/mol(66.7 Pa)、E3=54.72 kJ/mol(666.7 Pa)、E4=39.61 kJ/mol(1333 Pa);反应后期:E*1=112.90 kJ/mol(6.67 Pa)、E*2=89.92 kJ/mol(66.7 Pa)、E*3=97.32 kJ/mol(666.7 Pa)、E*4=51.83 kJ/mol(1333 Pa).从动力学的角度提出了反应的较佳条件.温度、真空度的提高一方面可增大反应速率,但另一方面却加大了硫化铝的挥发,仅从增大速率而言,温度应大于1100 ℃,真空度应优于1333 Pa为宜.  相似文献   

8.
A hierarchically structured α-Al2O3/Al3Ti composite was fabricated by an in situ process called exothermic dispersive synthesis from a powder blend of Al and TiO2. The microstructure of the composite was investigated by X-ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectroscopy. Three transitional phases, specifically TiO, Ti2O3, and γ-Al2O3, were found to form during the reactive process. Using differential scanning calorimetry, it was found that the reaction between the Al and TiO2 occurred through three intermediate steps and their corresponding activation energies were 390, 205, and 197 kJ/mol, respectively. Moreover, the reaction rate of the third step was found to be much higher than that of the second step, and the time taken by each reaction step decreased with the increase of the heating rate. The findings are critical to understanding the microstructural development in the synthesis of strong and tough Al2O3/Al3Ti composites.  相似文献   

9.
Computed X-ray tomography was used to characterise distribution and sphericity of Ti granules within highly porous (> 35%) Al2O3 powder compacts, as they are key parameters for a successful infiltration by Fe-based alloys. Setting of reconstruction constraints, image editing as well as data processing are the most challenging parts of computed X-ray tomography and principal sources of errors that bias the generated data. Thus, corrective measures have to be applied and the reliability of generated data has to be proved with respect to statistical, stereological and volumetric aspects. Combining an adapted Interface Particle Treatment Algorithm with the Marching Cube Method, Equilibrium Random State Model, cluster splitting and conventional laser diffraction measurements a significant improvement of the three-dimensional reconstructed data was achieved. This study points out the need of the applied algorithms for the proof and improvement of generated data by computed X-ray tomography and gives a short survey of methods that can be applied.  相似文献   

10.
利用放电等离子烧结(SPS)制备了性能优异的40%(体积分数)Ti/Al2O3复合材料,其弯曲强度、断裂韧性、显微硬度和相对密度分别为897.29MPa、17.38MPa·m1/2、17.13GPa和99.24%.SEM和HREM对复合材料的微观结构分析发现,晶粒细化、位错环强化等是材料强度提高的主要原因;裂纹的偏转和桥联是材料韧性提高的关键所在.  相似文献   

11.
12.
Abstract

A pure Al matrix composite, reinforced by potassium titanate whiskers coated with sol–gel alumina, was fabricated by squeeze casting. Good interface bonding was achieved in the coated composite. Interfacial reactions in the composite were found to be less severe than those in an uncoated composite, owing to the barrier effect of sol–gel -Al2O3 coating. After the composite was thermally exposed at 530°C for 30 h, the alumina coating still restrained the decomposition of the whisker structure, and thus prevented a decrease in the strength of the composite. However, after a thermal exposure at 700°C for 10 h, the coating was no longer held on whisker surfaces. Mechanical testing showed that tensile fracturing of the coated composite tended to occur at the coating/matrix interface where the interfacial bonding is weaker than at the coating/whisker interface.  相似文献   

13.
Ti3AlC2/Al2O3 nanocomposite powder was synthesized by mechanical-activation-assisted combustion synthesis of TiO2, Al and C powder mixtures. The effect of mechanical activation time of 3TiO2-5Al-2C powder mixtures, via high energy planetary milling (up to 20?h), on the phase transformation after combustion synthesis was experimentally investigated. X-ray diffraction (XRD) was used to characterize as-milled and thermally treated powder mixtures. The morphology and microstructure of as-fabricated products were also studied by scanning electron microscopy (SEM) and field-emission gun electron microscopy (FESEM). The experimental results showed that mechanical activation via ball-milling increased the initial extra energy of TiO2-Al-C powder mixtures, which is needed to enhance the reactivity of powder mixture and make it possible to ignite and sustain the combustion reaction to form Ti3AlC2/Al2O3 nanocomposite. TiC, AlTi and Al2O3 intermediate phases were formed when the initial 10?h milled powder mixtures were thermally treated. The desired Ti3AlC2/Al2O3 nanocomposite was synthesized after thermal treatment of 20?h milled powder and consequent combustion synthesis and FESEM result confirmed that produced powder had nanocrystalline structure.  相似文献   

14.
Al2O3/Ti3SiC2层状复合材料的制备与性能   总被引:4,自引:0,他引:4  
采用两种方法制备Al2O3/Ti3SiC2层状复合材料,一是原位-热压法,即Ti3SiC2是在层状材料的制备过程中同时被合成的;一是分步法,即制备过程分两步进行,首先制备出Ti3SiC2高纯粉,再采用热压法进行烧结制备层状材料。两种方法制备的Al2O3/Ti3SiC2层状复合材料强度保持在450MPa以上,断裂功达到1200-1560J/m^2,相对Al2O3块体材料提高十余倍。另外,不同的制备方法得到不同的组成和显微结构,决定了这两种Al2O3/Ti3SiC2层状复合材料性能的差异:前者强度较高韧性较低,后者强度较低而韧性较高。  相似文献   

15.
The structure of Al2O3-Cr2O3 powders prepared by plasma oxidation of the mixed halides has been examined by X-ray diffraction, electron microscopy and electron spin resonance. The powders consisted predominantly of faceted spherical particles of a well crystallized solid solution of Cr2O3 in θ-Al2O3, with diameters of the order of 0.1 μm. Some larger particles of α-Cr2O3 were present in powders containing 17.8 and 24 wt% Cr2O3. The maximum solid solubility of Cr2O3 in θ-Al2O3 observed was 18 wt%. It is suggested that nucleation of crystallization of liquid Al2O3-Cr2O3 droplets occurs as a structure based on cubic close packing of oxygen ions and that the presence of chromium results in ordering to the θ-Al2O3 form rather than the δ-Al2O3 form usually observed in alumina powders prepared by plasma methods.  相似文献   

16.
以Ti,Al,Tic,TiO2粉末为原料,采用原位热压合成法制备了Ti3AlC2/Al2O3复合材料.主要考察不同Al2O3含量对复合材料性能的影响.在1 400℃,30 MPa压力,保温2 h条件下烧结制得致密的Ti3Alc2/Al2O3块体材料.采用XRD分析了不同Al2O3,含量的复合材料的相组成.用SEM观察组织结构特征.测量了维氏硬度和电导率同Al2O3含量的关系曲线.研究结果表明,A12O3,的加入可大幅度提高复合材的硬度.Ti3AlC2/25%A12O3的维氏硬度可达8.7 GPa.虽然添加Al2O3后复合材料的电导率有所下降,但Al2O3对复合材料强度和硬度的增加有显著的贡献.Ti3Al2C2/Al2O3乃不失为一种性能良好的高温结材材料.  相似文献   

17.
A microstructural study has been carried out of plasma-sprayed Al2O3 and mixed and sintered Al2O3Y2O3. In order to ascertain the degree of metastability achieved by plasma spraying, these results are compared with a similar experiment utilizing a CO2 laser for melting and the hammer-and-anvil technique for quenching of the same materials. X-ray diffraction methods were used to determine the obtained phases and crystal structures. In addition, transmission electron microscopy was used to confirm the phases present and to study their morpology. The porosity was studied with both mercury intrusion porosimetry and small angle neutron scattering. The addition of Y2O3 is shown to decrease the porosity from 15% to 7.5%. Adhesion is likewise related to the addition of Y2O3 and it is seen that adhesion of the mixture is measurably improved over that of pure Al2O3. The implication of these results is discussed.  相似文献   

18.
19.
Three different oxides of CrO2-TiO2, Al2O3 and Al2O3-TiO2 were plasma-sprayed on Ti substrate to evaluate the crystal structure and the corrosion properties of the coatings. No phase change of the coatings after corrosion test in 0.5 M H2SO4 solution at 25°C was found regardless of the presence of the NiCoCrAlY bond layer. Electrochemical measurements and SEM results revealed that the single coatings without the bond layer were always effective against corrosion resistance due to lower current density within the passive region. Pitting corrosion of the surface was observed for the Al2O3 coating. It can be concluded that the Al2O3-TiO2 coating without the bond layer may be the best oxide among the oxides investigated due to low porosity (5.4%), smooth surface roughness (4.5 μm), low current density (6.3 × 10‒8 A/cm2) in the passive region, low corrosion potential (Ecorr, ‒0.55 V) and no pitting corrosion.  相似文献   

20.
1.IntroductionTo improve the mechanical properties and relieve mis-matches between the filler metals and base materials,the particulates of superalloys,ceramic or carbon fiberswere added into the conventional brazing filler metal toform composite filler material.The method has beenused in aero-engine component repairing[1,2],fine castcomponent joining[3],wide clearance butt jointing[4],ce-ramic brazing[5,6]and electronic package[7].However,the method was used mostly in metal brazing.The mi-cro…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号