首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ti1.0VxMn(2-x)(x=0.6~1.6)合金的微结构和储氢性能   总被引:1,自引:0,他引:1  
系统研究了V替代Mn对Ti1.0VxMn(2-x)(x=0.6~1.6)合金的相结构及吸放氢性能的影响。研究结果表明:随着X的增加,合金由Laves和bcc两相结构逐渐变化到bcc单相结构,吸氢量也随之增加;当V含量增加到x≥1.2时,合金具有bcc单相结构,合金最大吸氢量达到3.5%(质量分数),但是由于缺少脆性的Laves相,合金的活化性能变差,饱和吸氢时间也有所延长;随着V含量的增加,合金主相bcc相晶胞体积增大,从而导致合金PCT曲线平台压力降低,滞后效应也逐渐增大,但平台趋向于平缓。  相似文献   

2.
系统研究了Ti17Cr23V55-xZr5Fex(x=11~16)合金的相结构以及储氢特性。XRD及SEM分析表明,所有合金的主相均为体心立方(bcc)结构的钒基固溶体,并含有σ-FeCr和Cr2Zr等第二相;随着Fe含量的增加,合金中的bcc主相含量和晶胞体积逐渐降低,σ-FeCr相含量逐渐增多,而Cr2Zr相含量几乎恒定。储氢性能测试表明,该系列合金的活化性能和动力学性能都很好,在20℃和4MPa初始氢压条件下首次吸氢即可活化,并且无需氢化孕育期就能快速吸氢。当Fe含量从x=11增加至x=16时,合金的室温最大吸氢量从268ml/g逐渐降低至25lml/g,80℃有效放氢量从153ml/g逐渐降低至137ml/g。研究表明,为了改善合金的有效储氢能力,必须消除合金中不吸氢的σ-FeCr相或者抑制σ-FeCr相的生成。  相似文献   

3.
利用高频熔炼方法制备了La1+xMg2-xNi9(x=0,0.5,1.0,1.5)系列合金,并对其进行了XRD分析和储氢容量及电化学性能测定。结果表明:随着La含量增大,合金中LaNi5和(La,Mg)Ni3相转变为LaNi3相,且Mg2Ni相出现,晶胞体积也增大,合金的储氢容量和电化学性能提高;当x=1.5时,Mg2Ni相消失,合金的储氢性能有所下降。当x=1.0时,即La2MgNi9合金具有较好的储氢容量及电化学容量。  相似文献   

4.
系统研究了Zr含量对(Ti-Cr)45-xV55Zrx(x=1,3,5,7;Ti/Cr=0.7~0.75)合金微结构及储氢性能的影响。XRD及SEM分析表明,当Zr含量x=1时,合金由体心立方(bcc)结构的钒基固溶体主相和微量α-Zr第二相组成;当Zr含量增至x=3~7时,合金由bcc钒基固溶体主相和α-ZrCr2第二相组成。储氢性能测试表明,随着Zr含量的增加,合金的活化性能得到改善:室温最大吸氢量和80℃有效放氢容量均先增后降,并在x=5时达到最高值:P.C-T曲线滞后减小,平台倾斜度增大。在所研究的合金中,(Ti-Cr)40V55Zr5合金的综合性能最佳,经2次吸放氢循环就活化,室温最大吸氢量可达403ml/g,80℃有效放氢容量达到230ml/g。  相似文献   

5.
研究了(Ti0.1V0.9)100-xFex(x=0~6)合金的微观结构及其吸放氢特性。微结构分析表明,合金均由单一的体心立方(bcc)结构的钒基固溶体相组成;合金的点阵常数随着Fe含量的增加呈线性递减,晶胞体积也随之逐渐降低。储氢性能测试表明,所有合金的动力学性能均比较好,在10℃和4MPa初始氢压条件下,合金无需氢化孕育期就能吸氢。随着Fe含量从x=0增加至x=6,合金的活化性能得到改善;10℃最大吸氢量从509.5ml/g逐渐降至424.8ml/g;50℃有效放氢量先升后降,并在x=4时达到最高值255.6ml/g。在所研究的合金中,Ti9.6V86.4Fe4合金具有最佳综合性能,经2次吸放氢循环即可活化,10℃最大吸氢量为494.5ml/g,50℃有效放氢量达到255.6ml/g。  相似文献   

6.
系统研究了Ti100-x-yVxFey(x=54,49,44;y=5,7.5,10)储氢合金的相结构及其吸放氢性能。XRD及SEM分析表明,Ti41V54Fes合金由体心立方(BCC)结构的固溶体主相和少量的α-Ti第二相组成;而Ti43.5V49Fe7.5和Ti46V44Fe10合金均为单一的BCC固溶体相。储氢性能测试表明,3种合金的动力学性能均很好,在室温和4MPa初始氢压条件下,无需氢化孕育期就能快速吸氢:经4次~5次吸放氢循环即能活化,仅2min~3min就能吸氢饱和达到最大吸氢量363.7ml/g-372.4ml/g;在300℃和0.1MPa放氢终压条件下,合金的放氢量在220.3ml/g-238.5ml/g之间。在所研究的合金中,Ti46V44Fe10合金的综合性能最佳,经4次吸放氢循环即活化,室温最大吸氢量可达372.4ml/g,放氢量达到238.5ml/g。  相似文献   

7.
系统研究了Ti0.9Zr0.1Mn1.5储氢合金经不同时间(t=0min,10min,30min,60min)球磨改性处理后对其相结构及储氢性能的影响。结构分析表明,Ti0.9Zr0.1Mn1.5合金在球磨改性处理前后均由单一的六方结构的C14型Laves相组成;随着球磨时间的延长,合金粉的平均粒度减小,并出现了部分团聚现象。储氢性能测试表明,铸态合金经4次吸放氢循环后活化,室温最大吸氢量和有效放氢量分别为209.3ml/g和157.6ml/g,放氢率为75.3%;随着球磨时间的延长,合金的活化性能得到改善,室温最大吸氢量和有效放氢量均先升后降,且都在球磨30min时达到相应最高值231.4ml/g和203.8ml/g,放氢率达到88.1%。由此可见,适当的球磨改性处理能有效地改善Ti0.9Zr0.1Mn1.5合金的综合储氢性能。  相似文献   

8.
TiV2.1Nix(x=0.2~0.6)贮氢合金的相结构及电化学性能   总被引:2,自引:0,他引:2  
系统研究了TiV2.1Nix(x=0.2,0.3,0.4,0.5,0.6)贮氢合金的相结构及电化学性能。XRD及SEM分析表明:合金均由体心立方(bcc)结构的V基固溶体主相和TiNi基第二相组成;随着Ni含量x的增加,合金中V基固溶体主相的相含量和品胞参数逐渐减小,TiNi基第二相含量逐渐增多,且当x≥0.4时,TiNi基第二相组织沿主相晶界形成明显的三维网络状结构。电化学测试表明:随着x的增加,合金的高倍率放电性能及循环稳定性均得到显著改善;但当x从0.4增加到0.6时,合金的活化性能变差,最大放电容量降低。在研究的合金中,TiV2.1Ni0.4表现出较好的综合性能。  相似文献   

9.
La0.7Mg0.3Ni3.4-xCo0.6Mnx(x=0.0~0.5)合金主要由(La,Mg)Ni3相和LaNi5相构成,各相的晶胞参数和晶胞体积均随Mn含量的增加而增大。随Mn含量的增加,合金的放氢平衡压力从0.128MPa(x=0.0)下降到0.067MPa(x=0.5),导致最大吸氢量从x=0.0时的1.19%(质量分数,下同)逐渐增加到x=0.4时的1.38%。合金的最大放电容量随Mn含量的增加首先从330.4mAh/g(x=0.0)增加到360.6mAh/g(x=0.4),然后减小到346.9mAh/g(x=0.5)。随Mn替代量的增加,合金电极的高倍率放电能力先改善后降低,合金电极的表面反应阻抗先降低后升高,而氢的扩散系数先增加后减小,说明合金的电化学动力学性能首先提高然后降低。  相似文献   

10.
针对电动车用大型动力Ni/MH电池工作温度较高的特点 ,系统地研究了Mn部分取代Ni对贮氢合金RENi3 .95-xMnxCo0 .75Al0 .3 相结构和高温 (6 0℃ )电化学性能的影响。结果表明 ,RENi3.95-xMnxCo0 .75Al0 .3(x =0~0 .6 )合金具有单一的CaCu5型LaNi5相结构 ,其晶胞体积随Mn含量的增加而增大 ;Mn的加入能有效地改善合金的高温活化性能和放电容量 ,但会加快合金的循环容量衰退 ,降低充放电循环稳定性 ;Mn含量在x =0 .3~ 0 .5时 ,合金具有较好的高温高倍率放电性能  相似文献   

11.
系统研究了TiV2.1Nix(x=0.2,0.3,0.4,0.5,0.6)贮氢合金的相结构及电化学性能。XRD及SEM分析表明:合金均由体心立方(bcc)结构的V基固溶体主相和TiNi基第二相组成;随着Ni含量x的增加,合金中V基固溶体主相的相含量和晶胞参数逐渐减小,TiNi基第二相含量逐渐增多,且当x≥0.4时,TiNi基第二相组织沿主相晶界形成明显的三维网络状结构。电化学测试表明:随着x的增加,合金的高倍率放电性能及循环稳定性均得到显著改善;但当x从0.4增加到0.6时,合金的活化性能变差,最大放电容量降低。在研究的合金中,TiV2.1Ni0.4表现出较好的综合性能。  相似文献   

12.
系统研究了La(Ni,Sn)x(x=5.0~5.4)无Co贮氢合金的化学计量比x对合金相结构和电化学性能的影响.XRD分析表明,除在x=5.4的合金中析出有少量的第二相(Ni)外,其它合金均为单相CaCu5型结构.随着x的增加,合金晶胞的c/a比值逐渐增大,并使合金的吸氢体积膨胀率(△V/V)明显减小,其原因主要与过计量比合金的晶体结构中存在有沿c轴定向排列的Ni-Ni“哑铃”对的结构特征有关.电化学测试表明,增大x会使合金的最大放电容量和高倍率放电性能(HRD)有所降低,但合金的循环稳定性得到显著提高.合金HRD值的减小主要是由于过计量比降低了合金电极的电催化活性,而合金循环稳定性的显著改善则主要归结于过计量比合金较小的吸氢体积膨胀及粉化倾向所致.  相似文献   

13.
为了改善Ti基贮氢合金的电化学性能,采用XRD,SEM及EDS分析了Ti0.3Zr0.225V0.25Mn0.3-xNi0.45+x(x=,0.05,0.10,0.15,0.20,0.25)贮氢合金的相结构及相成分,并研究了合金的电化学性能。结果表明,合金均由六方结构的C14型Laves主相和立方结构的C15型Laves第二相构成;随着Ni替代量x的增大,合金的活化性能降低,而循环稳定性得到一定程度的改善。当Ni替代量x=0.05时,合金的放电容量达到最大,为426mAh/g,显示出很大的应用潜力.  相似文献   

14.
用XRD、SEM等方法与手段,研究TiMn2-5x(V4Fe)x(x=0.30,0.35)贮氢合金的相结构及电化学性能。结果表明:主相为体心立方(bcc)结构的合金,其晶胞参数随x的增加而增大;SEM显示在基体中存在岛状结构,随着x的增加,岛状结构较基体的比率减少;电化学测试表明,x=0.35合金在常温下难以活化,加热到327K才能活化;而x=0.30合金常温下即可活化,该合金在充电过程中出现钝化,327K温度下钝化消除。比较合金在298K的PCT曲线,发现x=0.30合金的平台氢压约为0.2MPa,平台宽度较大,更有开发价值;同时计算x=0.30合金放氢过程的焓和熵,分别为–36.1kJ/mol,–126.9J/(mol·K)。  相似文献   

15.
为了提高V基固溶体贮氢合金的充放电循环稳定性能,研究了O含量对V2-xTi0.5Cr0.5NiOx (x=0~0.35)合金的组织结构和电化学性能的影响。组织结构分析表明,当没有添加O时,合金主要由bcc结构的V基固溶体相和TiNi相组成,随着O含量的增加,合金中出现了Ti4Ni2O新相。电化学测试表明,随着O含量的增加合金电极的最大放电容量有所降低,从x=0时的366.8 mAh/g降低到 x=0.35时的225.3 mAh/g,而较少氧含量时,合金电极的循环稳定性能明显得到了改善,从x=0时的69.9%增大到 x=0.2时的83.7%,而后又降低到76.9%(x=0.35)。电化学动力学分析结果表明,合金的高倍率放电性能,交换电流密度和氢的扩散系数均随着O含量的增加先增加而后减小。  相似文献   

16.
采用感应熔铸+热处理的方法制备了La(0.67-x)(Ti/Zr)xMg0.33Ni2.5Co0.5合金.结构分析表明,合金由PuNi3型相、Ce2Ni7型相、MgCu4Sn型相和Ti-Ni或Zr-Ni合金相等组成;Ti/Zr元素在PuNi3型物相和Ce2Ni7型物相中没有固溶,而是单独以Ti-Ni和Zr-Ni合金的形式存在;随Ti和Zr含量的增多,合金中PuNi3型物相的单胞体积呈线性减小趋势.Ti和Zr元素的掺入提高了合金的吸放氢平台,降低了合金的贮氢量.电化学研究表明,Ti/Zr元素显著提高了合金电极的高倍率放电性能,但过量的Zr元素会恶化合金电极的电催化活性;Ti/Zr元素的掺入对合金电极循环稳定性有一定改善,但同时会降低合金电极的电化学放电容量.  相似文献   

17.
纳米晶和非晶Mg20-xLaxNi10(x=0-6)贮氢合金的贮氢行为   总被引:1,自引:0,他引:1  
用快淬技术制备了Mg2Ni型贮氢合金,合金的名义成分为Mg20-xLaxNi10 (x = 0, 2, 4, 6)。用XRD、SEM、HRTEM分析了合金的微观结构。发现不含La的快淬合金中没有非晶相,但含La快淬合金中显示以非晶相为主。当La含量x≤2时,铸态合金的主相为Mg2Ni相,但随着La含量的进一步增加,铸态合金的主相改变为(La,Mg)Ni3+LaMg3相。应用Sieverts设备研究了铸态及快淬态合金的吸放氢量及动力学,结果表明,x=2的合金吸放氢量及动力学随淬速的增加而增加,但对于x=6的合金,结果是相反的。电化学测试结果表明,x=2合金的放电容量随淬速的增加而增加,而对于x=6合金,结果也是相反的。快淬显著地提高了x=2, 6合金的循环稳定性  相似文献   

18.
采用感应熔炼方法制备了A2B7型La0.75Mg0.25Ni3.5-xAlx(x=0,0.02,0.06 0.1,0.3)四元贮氢合金,系统研究了Al元素部分替代Ni对A2B7型La0.75Mg0.25Ni3.5合金相结构及电化学性能的影响。X射线衍射(XRD)分析表明:La0.75Mg0.25Ni3.5由单一La2Ni7相组成:Al元素加入后,开始出现CaCu5型LaNi5相,当x=0.3时,LaNis相成为合金的主相。Rietveld分析表明:随着Al含量的增加,LaNi5相逐渐增多,Al的加入利于CaCu5型LaNi5相的形成。电化学测试表明:Al替代Ni对A2B7型合金La0.75Mg0.25Ni3.5电极活化性能影响不大:而最大放电容量随Al在La0.75Mg0.25Ni3.5-xAlx,合金中替代量的增加而减小。当放电电流密度为1600mA/g时,合金的倍率放电性能由68.8%(x=0)增加到81.16%(x=0.1)然后减小到65.67%(x=0.3)。此外,La0.75Mg0.25Ni3.5-xAlx合金电极循环稳定性先增加而后下降。x=0.06时合金电极容量保持率最大(S100=85.21.%)。  相似文献   

19.
Intermetallic compound TiFe has been apromising candidate fOr hydrogen storage sinceReilly and Wiswa1l fOund its hydrogen absorp-tion capacity[l ]. However, due to its poor acti-vation characteristics, its large-scaIe commer-cia1 use is very hard. For binary TFe, high-temperature heat treatment is required to acti-vate TiFe specimens to absorb hydrogen atroom temperature. In this case, it may take aday or more and high pressure (5.0 MPa ormore) fOr complete activation[2].In the past year…  相似文献   

20.
为了改善Mg2Ni型合金的贮氢性能,采用Co部分替代合金中的Ni以及快淬工艺制备了纳米晶和非晶态Mg20Ni10-xCox(x=0,1,2,3,4)贮氢合金。用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构,并测试了合金的气态吸/放氢动力学及电化学贮氢性能。结果表明,在快淬无Co合金中没有形成非晶相,但快淬含Co合金中形成一定量的非晶相。Co替代Ni及快淬处理显著地改善了合金的气态吸放氢性能。同时,Co替代Ni也显著地提高了快淬态合金的放电容量和电化学循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号