首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The geothermal system in the West Kirishima area is controlled by a system of faults and fractures oriented along two main directions, northwest to southeast and east–northeast to west–southwest. The Ginyu fault extends through the Ogiri field in the Ginyu area, which is one of the east–northeast to west–southwest striking faults in this area. This fault is the reservoir target for developing the geothermal resources in the Ogiri field. The Ginyu fault is a near planar fracture with a uniform temperature of 232°C and has near-neutral pH, chloride fluids. Based on the results of a detailed analysis of the Ginyu fault, all production wells drilled in the Ogiri field intersected the Ginyu fault reservoir successfully, securing steam production for a 30 MWe power plant. A typical fracture-type geothermal model for the Ogiri field was developed on the basis of the geology, electric and geophysical logs, fluid chemistry, and well test data.  相似文献   

2.
Geothermal reinjection experience   总被引:1,自引:0,他引:1  
Reinjection into geothermal reservoirs is discussed and the experience gained by reinjection experiments in 44 geothermal fields is reviewed. Reinjection started purely as a disposal method, but has more recently been recognised as an essential and important part of reservoir management. Only a small part of the thermal energy in place in geothermal reservoirs can be recovered if reinjection is not applied. Thermal breakthrough has been observed in few geothermal reservoirs but has in all cases been found to be a manageable part of field operation. Silica scaling in surface equipment and injection wells is a delicate aspect of the reinjection process in most high-temperature geothermal fields, but silica scaling in the reservoir has not been considered a problem. Reinjection of low-enthalpy geothermal fluid into sandstone has not been successful, for reasons that are poorly understood. The location of injection wells in relation to production wells influences the ratio of injected fluid recovered in production wells. For peripheral injection, about one third of the injected fluid is commonly recovered, whereas injection within the production area results in a higher ratio of recovered fluid. Subsidence is in general of small concern in geothermal operations and micro-gravity has proved a valuable tool to estimate the recharge to geothermal reservoirs.  相似文献   

3.
The calcite deposition problem at Miravalles has been studied since it was observed in the first three wells drilled on the slopes of the Miravalles Volcano. Long-term tests have been carried out to study reservoir characteristics. The change in the production behavior of the wells with the restriction imposed by the deposited calcite has been studied trying to evaluate and quantify the scaling problem. Work is being done on predictions of the deposition rate, location and distribution of the deposited mineral inside the wells. This work was compared with real data obtained from caliper logs of the wells before and after production. The feasibility of the first 55 MW power plant has been demonstrated. It was considered that the solution for the calcite problem is the “reaming during discharge of the wells” trying at the same time to minimize the cleaning interventions with a new well design. A long-term inhibitor test has been scheduled by the beginning of 1989. The economic evaluation of this test may affect the decision of reaming the wells as a solution for the feasibility of the first and subsequent power units. It is also believed, due to the thermodynamics and chemical characteristics of the extracted fluids, that it is possible to find a “non-deposition zone” which will permit the drilling of wells without a scaling problem.  相似文献   

4.
The theory and applications of pressure transient (well test) analysis have been studied intensively for more than 40 yr by petroleum reservoir engineers and groundwater hydrologists. Only in the past decade, however, have geothermal-fluid wells been tested for the purpose of making pressure transient studies. Results of these studies disclose various well conditions, for example, restrictions to fluid flow into the wellbore. They also disclose reservoir heterogeneities, boundaries and permeability-thickness products of reservoir rocks. Probably most important, they can be used in estimations of energy reserves. This powerful analytical tool is discussed with special reference to the Travale reservoir.This reservoir is complicated geologically and hydrologically. It lies on the margin of a graben near a widespread outcrop of the reservoir rocks, which also form an absorption area for the meteoric waters. The area explored can be divided into three zones: in one of these (the nearest to the absorption area) some noncommercial wells produce two-phase water-steam mixtures; in the second zone the wells produce superheated steam, while a well drilled in the graben itself produces a fluid with an uncondensable gas content of about 80%. The reservoir is described in relation to defining areas for further exploration. The nature of the reservoir has affected the design of programs for collecting pressure-production data and other well performance data. The performance history prior to the advent of pressure transient studies pertains mainly to what is known as the ‘old’ Travale reservoir to the southwest of the ‘new’ Travale-Radicondoli reservoir in which the more recent wells are drilled and in which modern well test analysis methods have been applied. Data on the “old” reservoir are discussed first.Because of its initial performance and relationship to nearby wells the most important well in the “new” reservoir is Travale well 22. It has been subjected to extensive well testing. Nearly all the wells in the “new” reservoir have been involved, however, through well-interference tests. In these tests the wells surrounding Travale well 22 are shut in and their pressure responses to different Travale well 22 production rates are measured. Well interference tests indicate the characteristics of fluid flow in the reservoir between test wells and in a qualitative way the heterogeneous nature of the reservoir itself.Pressure transient theory is developed from ideal system behavior: one vertical, fully-penetrating well producing at a constant rate from a horizontal reservoir of uniform thickness and of infinite extent in any direction from the wellbore. A great deal of research has been done to aid well-test analysts in their interpretation of pressure buildup and pressure drawdown curves constructed from data taken on wells in actual reservoirs. This research generally is accomplished with model studies. Some of the models developed in the present research fit reasonably well with the build-up behavior of Travale well 22.The research done on the Travale reservoir is summarized here with the objective of showing what has been learned, how it can be applied, and what should be done next. Confidence in applications of pressure transient analyses in the Travale reservoir has been gained. New concepts of the reservoir system have emerged as a result of the research. Additional testing and more precise measurements in the field should lead to good engineering estimates of energy reserves.  相似文献   

5.
利用测温资料判别热储流体的运动方向   总被引:1,自引:0,他引:1  
热储温度数据主要通过钻探过程中温度测井来获取。由于在钻井过程中,钻孔周围的原始热动力条件常受到扰动。因此,地层温度需要通过对测温曲线进行细致地解释来获得。我们以Kaldarholt地热田为例,通过对34口勘探孔测温曲线的解释,分析了地热田的温度场分布特征。据此,建立了Kaldarholt地热田地下热水流动的概念模型,并为地热田开采井KH-36的成功定位起到关键的作用。  相似文献   

6.
《Geothermics》1987,16(1):47-60
A detailed analysis has been made of acoustic emissions detected during build-up tests in a geothermal production well in Kakkonda geothermal power plant, Japan, in 1982, 1984 and 1985. The three-dimensional structure of the hydrothermal reservoir in the field and its dynamic behavior have been investigated. The shape and location of the cracked reservoir, the fluid paths and degree of communication between the reservoir and the geothermal wells, have been revealed by this analysis. The dependence of AE (acoustic emission) activity on valve operations has also been studied. The stability of crack-like reservoirs depends on the reduction in flow-rate in the reservoir system, the closing rate of the wellhead valve and on intervals between the tests. Reservoir stability has been successfuly achieved during the 1985 test by valve regulation, according to the results of the AE study.  相似文献   

7.
《Geothermics》2006,35(2):181-197
A method is proposed for predicting the distribution of temperatures in geothermal areas using the neuronet approach and, in particular, downhole temperature logs. The method was tested against the results of an analytical model, showing that the errors in neuronet temperature estimates based on well log data derive from: (a) the neuronet “education level” (which depends on the amount and structure of information used for teaching) and (b) the distance of the point at which the estimate is made from the area for which data are available. These conclusions were confirmed when estimating temperatures in eight actual wells, using 50 downhole temperature logs from other wells in the geothermal area. It was found that, for this particular case, neuronet teaching utilizing 30 well logs results in an average forecast error of 20%. As the number of training logs increases (up to 50), the error slightly decreases (down to 16.9%). The effects of the teaching data pattern (conductive-type versus convective-type of temperature profiles) were also studied, and an optimal strategy was developed for the neuronet training, based on the information available.  相似文献   

8.
This paper is intended to be a state of the art review of geothermal reservoir simulation. Its recent application to the modelling of real geothermal reservoirs is described and put in the context of an emerging general approach to reservoir modelling. The use of computer simulation for geothermal well test analysis is described. One of the main recent uses of reservoir simulators has been for conducting numerical experiments aimed at improving the understanding of geothermal reservoir physics. Such studies on fractured reservoirs, the thermal structure of reservoirs and the effects of non-condensable gases and dissolved salts are outlined.  相似文献   

9.
The fracture characteristics of a heat reservoir are of critical importance to enhanced geothermal systems, which can be investigated by theoretical modeling. This paper presents the development of a novel flow-resistor network model to describe the hydraulic processes in heat reservoirs. The fractures in the reservoir are simplified by using flow resistors and the typically complicated fracture network of the heat reservoir is converted into a flow-resistor network with a reasonably simple pattern. For heat reservoirs with various fracture configurations, the corresponding flow-resistor networks are identical in terms of framework though the networks may have different section numbers and the flow resistors may have different values. In this paper, numerous cases of different section numbers and resistor values are calculated and the results indicate that the total number of flow resistances between the injection and production wells is primarily determined by the number of fractures in the reservoir. It is also observed that a linear dependence of the total flow resistance on the number of fractures and the relation is obtained by the best fit of the calculation results. Besides, it performs a case study dealing with the Soultz enhanced geothermal system (EGS). In addition, the fracture numbers underneath specific well systems are derived. The results provide insight on the tortuosity of the flow path between different wells.  相似文献   

10.
Exploration for geothermal resources began in Romania in the early 1960s, based on a detailed geological exploration program for hydrocarbon resources that had a capacious budget and enabled the identification of eight geothermal areas. Over 200 wells drilled to depths between 800 and 3500 m have indicated the presence of low-enthalpy geothermal resources (40–120 °C). Completion and experimental production from over 100 wells during the past 25 years has led to the evaluation of the exploitable heat resources of the geothermal reservoirs. The proven reserves, with the wells that have already been drilled, amount to about 200,000 TJ for 20 years. The main geothermal systems discovered on Romanian territory are in porous permeable formations such as sandstones and siltstones (Western Plain and the Olt Valley) or in fractured carbonate formations (Oradea, Bors, and north of Bucharest). The total thermal capacity of the existing wells is about 480 MWt (for a reference temperature of 25 °C). Only 152 MWt of this potential is currently being exploited, from 96 wells (35 of which are used for health and recreational bathing), producing hot water in the temperature range 45–115 °C. In 2002 the annual energy utilisation from these wells was about 2900 TJ, with a capacity factor of 0.6. More than 80% of the wells are artesian producers, 18 wells require anti-scaling chemical treatment and six are reinjection wells. During the period 1995–2002, 15 exploration-production geothermal wells were drilled and completed, two of which were dry holes. Drilling was financed by the geological exploration fund of the State Budget, to depths varying between 1500 and 3500 m. Progress in the direct utilisation sector of geothermal resources has been extremely slow because of the difficulties encountered during the transition period from a centrally planned to a free-market economy; geothermal production is at present far below the level that could be expected from its assessed potential, with geothermal operations lagging behind in technology. The main obstacle to geothermal development in Romania is the lack of domestic investment capital. In order to stimulate the interest of potential investors from developed countries and to comply with the requirements of the large international banks, an adequate legal and institutional framework has been created, adapted to a market-oriented economy.  相似文献   

11.
The Fushime geothermal field is located in a depression close to the coast line. The system is characterized by very high reservoir temperature (>350°C), and a high salinity production fluid. Geological analysis shows that the main reservoir in this field occurs in a fractured zone developed around a dacite intrusion located in the center of the field. High permeability zones recognized by drilling data are found to be associated with fault zones. One of these zones is clearly associated with a NW–SE trending andesite dike swarm which was encountered in some wells.Alteration in the system can be divided into four zones, in order of increasing temperature, based on calcium–magnesium aluminosilicate mineral assemblages: i.e., the smectite, transition, chlorite and epidote zones. The feed zone is located in the chlorite and epidote zones, which can be further divided into three sub-zones according to their potassium or sodium aluminosilicate mineralogy, from the center of the discharge zone: K-feldspar–quartz, sericite–quartz, and albite–chlorite zones.Chloride concentration of the sea-water is 19,800 mg/l, and Br/Cl mole ratio is 1.55. Based on geochemical information, the reservoir chloride concentration of this field ranges from 11,600 to 22,000 mg/kg. The Clres (Cl in reservoir), Br/Cl ratios and stable isotope data indicate that the Fushime geothermal fluid originated from sea-water and is diluted by ground water during its ascent. Some fluids produced from geothermal wells show low pH (about 4). It is thought that sulfide mineral (PbS, ZnS) precipitation during production produces this acidic fluid.  相似文献   

12.
We present a generalized non-isothermal tank model for predicting the pressure and temperature behaviors of liquid dominated geothermal reservoirs. A geothermal system is represented by a single or multiple tanks. These tanks can represent the reservoir, multiple reservoirs, aquifers or any other component of a geothermal system. The mass and energy balance equations for each tank are solved jointly. One of the main advantages of the model is that only a small number of tanks are used for modeling which avoids over parameterization of a geothermal system and results in faster run times when compared with fully discretized numerical simulators. Synthetic examples are used for studying the effects of heat conduction on reservoir performance, an analysis of the location of injection wells, recovery times of depleted geothermal fields and the benefits of using temperature data for a better characterization of the geothermal system.  相似文献   

13.
顾琳琳 《中外能源》2011,16(11):59-61
大庆油田萨中开发区自从2002年起进行水平井开发技术研究,经过几年的探索,形成了较为完善的挖潜厚油层顶部剩余油的水平井水驱挖潜技术。研究过程中,精细油藏描述技术在调整对象的确定、储层内部结构认识、水平井空间轨迹设计等方面发挥了重要作用,且该技术亦逐步得到完善。水平井的开发效果,取决于前期精细油藏描述的准备工作。如果在一定的油层条件下,选井过程中有较高的前期地质研究基础,对油藏认识比较清楚,构造、储层、流体特征刻画细致,并能够建立精细地质模型,则水平井就能得到较好的开发效果。大庆油田主力油层聚驱后设计的第一口水平井位于剩余油滞留区内,该井完钻井深1620m,完钻水平段长度563m,油层钻遇率达到67.1%。在深入研究剩余油分布状况、优化轨迹设计基础上,进行调整挖潜,该井初期投产日产液为134t/d,日产油为12.9t/d,含水为90.4%,含水较同类型直井低7个百分点以上,产能是直井的2倍以上,获得一定的开采效果。  相似文献   

14.
The behavior of low-temperature geothermal reservoirs under exploitation is simulated using analytical lumped-parameter models. These models consider the effects of fluid production and reinjection, as well as natural recharge, on the pressures (or water levels) of low-temperature, liquid-dominated geothermal systems. The computed responses for constant production/injection flow rates are given in the form of analytical expressions. Variable flow rate cases are modeled, based on the Duhamel's principle. Reservoir parameters are obtained by applying a weighted nonlinear least-squares estimation technique in which measured field data are history matched to the corresponding model response. By using history-matched models, the future performance of the reservoir can be predicted for different production/injection scenarios in order to optimize the management of a given geothermal system.We demonstrate the applicability of the models by simulating measured data from the Laugarnes geothermal field in Iceland, and the Balcova–Narlidere field in Turkey.  相似文献   

15.
High-temperature hydrothermal reservoirs typically have complex structures that are difficult to characterize even after a number of wells have been drilled. The most effective methods for characterizing the flow regime within a reservoir are: (1) three-dimensional mapping of the geological structure, temperature, pressure and permeability; (2) interpretation of tracer tests and reservoir fluid chemistry; and (3) flow test data analysis. (It is assumed that the petrophysical parameters of the various lithologic units have been determined on the basis of core and geophysical log data.) When these methods are applied to the Dachny reservoir of the Mutnovsky geothermal system, they yield the distribution in the field of lithologies, temperatures, phases and pressures, as well as the characteristics of the high-temperature fluid circulation (natural state initial and boundary conditions for the associated heat transfer problem).  相似文献   

16.
Geothermal binary power plants that use low-temperature heat sources have gained increasing interest in the recent years due to political efforts to reduce greenhouse gas emissions and the consumption of finite energy resources. The construction of such plants requires large amounts of energy and material. Hence, the question arises if geothermal binary power plants are also environmentally promising from a cradle-to-grave point of view. In this context, a comprehensive Life Cycle Analysis (LCA) on geothermal power production from EGS (enhanced geothermal systems) low-temperature reservoirs is performed. The results of the analysis show that the environmental impacts are very much influenced by the geological conditions that can be obtained at a specific site. At sites with (above-) average geological conditions, geothermal binary power generation can significantly contribute to more sustainable power supply. At sites with less favorable conditions, only certain plant designs can make up for the energy and material input to lock up the geothermal reservoir by the provided energy. The main aspects of environmentally sound plants are enhancement of the reservoir productivity, reliable design of the deep wells and an efficient utilization of the geothermal fluid for net power and district heat production.  相似文献   

17.
An estimate of reserves in the Serrazzano reservoir was obtained from mass balance studies and production decline curve analyses.The Serrazzano reservoir consists of a geometrically well-defined structural high of permeable formations separated from the other productive regions of the Larderello field.Deep drilling began in the 1930s and was limited to a small area exhibiting natural manifestations. After the second World War the area of drilling was extended to about 20 km2. Currently the drilling area is about the same. Even though the reservoir has been producing steam since the 1930s, a systematic collection of production data did not begin until after 1953.Data on average reservoir pressures were not available for the material balance calculations made in the study reported here. Calculated bottom hole pressures of shut-in wells were taken therefore to represent local static reservoir pressures. These pressures were used to calculate an “average reservoir pressure” which was graphed as a function of cumulative production. The reservoir pressure history corresponding to the first half of current cumulative production is not known. Data for the second half indicate a linear relationship between “reservoir pressure” and cumulative production.The conventional straight-line p/z vs cumulative production material balance relationship is known to be correct, of course, for closed single-phase gas reservoirs. The validity of this linearity for stream-producing systems with boiling water has not been proved. Regardless of this, the following observations were made: a line connecting the available data points extrapolated back to zero production indicates an initial reservoir pressure approximating at least 40 atm. Extrapolating the same data to zero reservoir pressure indicates the total initial steam in place to be about 170 × 106 tons.An empirical type-curve matching technique was applied to the production decline curves of wells in the reservoir. The curve for each well was extrapolated to infinite production time to obtain an estimate of total past and future production. Summing these values for all producing wells in the reservoir, an estimated total production (past and future) of 200 × 106 tons was obtained.The agreement between the estimated total production applying material balance principles and decline curve analyses is remarkably good. Although these results may be useful, further field and theoretical work are necessary to prove their validity.  相似文献   

18.
At Kizildere geothermal field, the fluid in the reservoir is hot pressurized water at 200°C containing about 2% CO2 dissolved in the fluid by weight. During production, as the pressure decreases this gas is released into the vapor phase. When the reservoir fluid loses its dissolved CO2 the equilibrium of the dissolved solids is destroyed and deposition occurs, either in the reservoir or in the well. Scaling in the well can be cleaned mechanically but it is more or less impossible to clean the reservoir. Thus the gas must be kept dissolved in the water until it reaches the well. At Kizildere the wells are cleaned every six months of production. After cleaning it has been observed that some of the wells regain their original production values and others do not. Well KD-14 was deepened and incrustation noted on the cuttings coming from the reservoir. On closing the wells some of them retain their well-head pressure at a constant value, whereas in others a pressure build-up continues at the well-head. Normally the static WHP are around 5 – 6 kg/cm2. However, after closure of the master-valve in wells KD14 and KD15 the WHP continued to increase until all the water column in the well was changed by the gas. This phenomenon occurs because of the presence of free gas in the reservoir.  相似文献   

19.
In this paper a brief review is given of the dependence of the oxygen isotopic fractionation of the sulfate ions-water system on temperature and the pH. From the available experimental data some relationships have been elaborated, which show that the isotopic exchange time is strongly temperature and pH dependent. The times for 97 per cent of isotopic exchange (near equilibrium conditions) at pH 7.0 are about 9 years at 200°C and 0.6 years at 330°C, while at pH 3.8 and at the same temperatures the times of exchange are 1.5 years and 0.08 years respectively. Thus, at the temperatures and pH of geothermal reservoirs the sulfate could be in isotopic equilibrium with environmental water, and the oxygen isotopic fractionation factors of sulfate-water geothermal pairs, being temperature dependent, can be used as geothermometers.Also reported here are some results on the O18 content of sulfate-water pairs from some wells on the edge of and outside the Larderello geothermal basin. The estimated isotopic temperatures are not very significant for the deep reservoir temperatures due to the geological features of the Larderello area which show important outcropping and deep anhydrite layers. Furthermore, as regards the wells outside the Larderello basin (Travale wells) some mixing of the geothermal water with colder underground water has been proved. However, the isotopic temperatures are generally higher than those measured at the well-head, and the highest ones are close to those estimated for the geothermal reservoir.In other geothermal areas more convenient from a geological point of view, the O18 content of the sulfate-water pair can be a useful and accurate thermometer.The O18/O16 ratios of several other sulfates (surface and deep anhydrite samples, sulfate ions in thermal springs) from the same area were also determined and differ substantially from borehole sulfate values.  相似文献   

20.
Interpretation of petrophysical log is one of the most useful and important tools in petroleum geology. Well logs help determine the physical characteristics of a reservoir, such as lithology, porosity, permeability, producer regions and their depth and thickness, and also differentiating between oil and gas and water in a reservoir and defining hydrocarbon reserve. A continual record of the physical characteristics of rocks in various depths is called well logs. Petrophysical logs usually include gamma ray, spontaneous potential, resistance, density, neutron, nuclear magnetic resonance, and sonic. The purpose of this study is to determine those characteristics of the reservoir that cannot be specified directly through present measuring well logs, using an intelligent problem-solving system of neuro-fuzzy. In this study, porosity and permeability are determined as two of the most important reservoir characteristics having much influence on reservoir understanding, reservoir reserve, and capability of reservoir production. The system of determining reservoir characteristics (neuro-fuzzy) was tested on collected well log data from oil and gas fields in the south of Iran. The most important result obtained in this study is that if all data influencing one of the reservoir characteristics are presented to the neuro-fuzzy system, then this system will be an excellent model with low error for determining all of the complex characteristics of the reservoir. These produced intelligent systems predict porosity and permeability completely on training and testing data and the correlation coefficient is near 1 and normalized mean square error is near to zero. Engineers and researchers can predict the reservoir characteristics with very good precision by these intelligent systems. The results of this study prove that a neuro-fuzzy intelligent system is a very powerful tool for determining permeability and porosity at the wells of a naturally fractured gas condensate reservoir. It is the first time to predict porosity and permeability from well logs using adaptive neuro-fuzzy inference system in a naturally fractured gas-condensate reservoir in Khuff Formation (Kangan and Upper Dalan Formation), which is a heterogeneous formation with a wide range of permeability and porosity in the Middle East; this method predicts permeability and porosity precisely in this heterogeneous formation. The other novelty of this study is the choice of appropriate input parameters to determine porosity and permeability precisely. Because of the heterogeneous condition of naturally fractured gas-condensate reservoirs in Khuff Formation, the appropriate input parameters cause the system to train optimally and thus increase the system ability to estimate the output in various conditions precisely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号