首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The pertaining kinetic characteristics during the sintering of bulk polycrystalline MgB2 superconductors is essentially important for the improvement of properties. Here Differential Thermal Analysis was adopted to record the heat effect during the preparation of bulk MgB2 samples. The reaction between Mg and B powders starts before the melting point of pure Mg and the evolution for the fractions of MgB2 were determined as a function of sintering temperatures. After fitting with different kinetic mechanism functions assumed, the sintering process of bulk MgB2 superconductors was attributed to a solid-state interface-reaction controlled mechanism with an apparent activation energy of 4.54 × 105 J mol−1. Combined with microstructural observations by scanning electron microscopy and phase identification by X-ray diffraction, the formation process of MgB2 phase was classified into two different stages: (i) solid-solid reaction stage, in which Mg and B powder starts to react and the growth of MgB2 grain is restricted by the pinning effects of pores; (ii) solid–liquid reaction stage, in which the molten Mg melt promotes the reaction process and the regular hexagon bulk MgB2 grain forms in a solution-reprecipitation and growth mode.  相似文献   

2.
Combined with thermal analysis and phase identification, the sintering process of Ag-doped MgB2 superconductor was investigated. It is found that the Ag doping could form Mg–Ag liquid through the eutectic reaction at low temperature (about 470 °C) and then obviously accelerated the formation of MgB2 phase. Moreover, a sintering model is also proposed to illustrate the liquid activated sintering mechanism present in the sintering process of Ag-doped MgB2 samples. The sintering model is supposed to provide theoretic guidance for optimizing the sintering condition in the synthesis of doped MgB2 superconductors.  相似文献   

3.
Magnesium oxide (MgO) whiskers (with diameters of about 60–80 nm) formed on the surface of bulk polycrystalline MgB2 superconductor at a relative low temperature (720 °C) during in situ sintering process. The reaction between Mg and B powders begins at a temperature below melting point of Mg and maintains till about 750 °C. The residual Mg powders evaporate and react with trace oxygen to form MgO vapor as the temperature exceeds the melting temperature of Mg and a low supersaturation is required for the growth of MgO whiskers. The preformed MgB2 and MgO crystals act as substrates and the melted Mg powders on the surface of them serve as catalysts during the growth process of MgO whiskers. The growth process of MgO whiskers is dominated by a self-catalytic vapor–liquid–solid (VLS) mechanism.  相似文献   

4.
Bulk (MgB2)0.96Ni0.04 samples doping with premilled Ni powders were sintered at 750 °C for 30 min. During sintering, liquid Mg–Ni phase prompts solid–solid reaction between Mg and B and the size of milled Ni powder determines the final distribution of the secondary MgNi2.5B2 phase in the sintered samples. A flux jump was observed in the (MgB2)0.96Ni0.04 samples doping with Ni powders. Recognized from the measured superconductive properties, smaller-sized Ni powders can provide more effective flux pinning centers and thus improve the performance of the critical current density.  相似文献   

5.
Thermal analysis, phase identification and microstructure observation were adopted to explore the accelerating sintering effect of Cu-doping on the low-temperature formation of MgB2 below Mg melting. It is found that the Cu-doping sintering of MgB2 bulk followed an activated sintering mechanism and thus obviously promoted the reaction between Mg and B forming bulk MgB2. Accordingly, dense MgB2 bulks with excellent Tc and Jc were successfully synthesized by the Cu-doping sintering at 575 °C for only 5 h. Further, a sintering model was proposed to illuminate the Cu-doping activated sintering mechanism. It is found that during the Cu-doping activated sintering process, the local Mg-Cu liquid generates firstly and then segregates to the interface between Mg and B particles, which can wet Mg particles and provide a rapid transport for the diffusion of neighboring Mg atoms into B particles resulting in the accelerated formation of MgB2 phase.  相似文献   

6.
Bulk (Mg1.02B2)1−x Sn x samples (x = 0.0, 0.01, 0.03 and 0.05) were synthesized by in situ sintering at 850 °C for one hour. Based on the phase identification and microstructure observation, the Mg2Sn and Sn impurities are found as the main impurities in Sn-doped samples. According to the magnetization measurements, the low doping level of Sn was observed to have small influence on the grain connectivity, and thus a high critical current density was maintained at low field. However, the values of the critical current density at high field in the Sn-doped samples show a little decrease.  相似文献   

7.
Bulk materials of MgB2 have been prepared with the stoichiometry of MgB2(Al2O3) x (x = 0, 2, 5, 10 and 20% nano-Al2O3 powders), by using solid-state reaction route. All samples were sintered at 750 °C for 30 min in a calorimeter to monitor the sintering reaction process. It is found that the onset temperatures of reaction between Mg and B powders increase significantly with increasing the amount of Al2O3. However, the reaction time is shortened for the nano-Al2O3 powders can effectively activate the reaction as a catalyst. The critical transition temperature decreases from 38.5 to 31.6 K, and the corresponding temperature window becomes narrow (less than 2.6 K). Furthermore, the amount of MgO impurity was found to increase with the increase of Al2O3, which probably indicates that partial Mg was replaced by Al.  相似文献   

8.
With the aim of improving the critical current density (J c ) in the MgB2 superconductor, minor Cu (3?at%) was doped to the MgB2 samples in-situ sintered with Mg powder and sugar-coated amorphous B powder. Combined with thermal analysis, phase identification, microstructure observation and J c measurement, the effect of minor Cu addition on the sintering mechanism, microstructure and critical current density of sugar-doped MgB2 superconductors were investigated. It is found that the minor Cu addition could obviously accelerated the MgB2 phase formation and improve the growth of MgB2 grains during the sintering process of sugar-doped MgB2 due to the appearance of Mg?CCu liquid at low sintering temperature. On the other hand, the Mg?CCu liquid hindered the reactive C released from sugar entering in the MgB2 crystal lattice. Hence, the connectivity between MgB2 grains was improved accompanying with the C substitution for B is decreased. At 20?K, the J c of co-doped samples at low fields was further increased whereas it is decreased at high fields, compared with the only sugar-doped samples.  相似文献   

9.
The effects of the amount of hexylbenzene additive (C12H18) on the structural, thermal, and magnetic properties of MgB2 superconductor are examined in this study. Pure and hexylbenzene-doped MgB2 bulk samples were produced with in situ solid-state reaction method. X-ray diffraction patterns of MgB2 doped with MgB2 and hexylbenzene at different ratios were determined to have MgB2 as the main phase and consisted of a small amount of MgO. Pure and different ratios of hexylbenzene-doped Mg and B starting powders were heat-treated by a differential scanning calorimeter between room temperature and 800 °C. It was determined from the differential scanning calorimetry curves obtained that the first exothermic peak pointed the MgB2 phase emerging with a solid–solid (Mg–B) reaction, and this temperature shifted towards the low temperatures as the hexylbenzene addition rates increased. It was observed that there was dependency to the applied field in all samples from the ac susceptibility measurements as a function of the temperature in pure and hexylbenzene-doped MgB2 superconductor materials, and shift towards the lower temperatures in T c, superconducting transition temperature, with increasing content. It was observed that the changes occurred in in-phase (\(\chi ^{\prime })\) and out-off-phase (\(\chi ^{\prime \prime }\)) components of ac susceptibility both weakened the MgB2 phase structure of hexylbenzene content and, as a result of this, led to changes in the pinning mechanism.  相似文献   

10.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

11.
A new glass system SnO–MgO–P2O5 with low viscosity has been developed by a melt-quenching method. Formation, thermal properties, and chemical durability of these glasses have been investigated. For a constant P2O5 concentration, the glass formation ability is enhanced with the increasing Sn/(Sn + Mg) ratio. The glasses exhibit low glass transition temperature (T g = 270–400 °C), low dilatometric softening temperature (T DS = 290–420 °C), and high thermal expansion coefficient (CTE = 110–160 × 10−7 K−1). With the increasing Sn/(Sn + Mg) ratio, T g and T DS decrease, and CTE increases. When Sn/(Sn + Mg) ratio is varied, the relationship between chemical durability and thermal properties of the present glasses is not consistent with what expected in general cases. It is noted that the glasses with 32–32.5 mol% P2O5 exhibit excellent chemical durability and tunable T g, T DS, and CTE (by varying Sn/(Sn + Mg) ratio).  相似文献   

12.
Though low-temperature sintering of MgB2 superconductors below Mg melting point can effectively depress volatility of Mg and increase sintering density, its development was limited in recent years for the reason that it usually took very long time to form complete MgB2 phase with excellent Jc at low temperature. In present work, significantly improved Jc was surprisingly obtained in the MgB2 samples sintered at 575 °C for only 5 h after short-time ball milling, even though formation of MgB2 phase is not completed and lots of residual Mg is still present in these samples. The grain connectivity in prepared samples is obviously improved compared to referred MgB2 sample sintered at high temperature, which is responsible for the improvement of Jc. The method developed in present work seems bring a new opportunity for the development of low-cost practical MgB2 superconductors with improved Jc without using expensive nanometer-size dopants or high-temperature sintering.  相似文献   

13.
We have fabricated MgB2/Fe monofilament wires and tapes by a powder-in tube (PIT) technique, using an ex-situ process without any intermediate annealing. MgB2/Fe monofilament tapes were annealed at 650–1,050°C for 60 min and 950°C for 30–240 min. We have investigated the effect of annealing temperatures and times on the formation of MgB2 phase, activation energy, temperature dependence of irreversibility field H irr(T) and upper critical field H c2(T), transition temperature (T c), lattice parameters (a and c), full width at half maximum, crystallinity, resistivity, residual resistivity ratio, active cross-sectional area fraction and critical current densities. We observed that the activation energies of the MgB2/Fe monofilament samples increased with increasing annealing temperature up to 950°C and with increasing annealing time up to 60 min while it decreased with increasing magnetic field. For the MgB2/Fe monofilament tape, the slope of the H c2T and H irrT curves decreased with increasing annealing temperature from 850 to 950°C as well as with increasing annealing time from 30 to 60 min. The transport and microstructure investigations show that T c, J c and microstructure properties are remarkably enhanced with increasing annealing temperature. The highest value of critical current density is obtained for the sample annealed at 950°C for 60 min. The J c and T coffset values of the sample annealed at 950°C for 60 min were found to be 260.43 A/cm2 at 20 and 38.1 K, respectively.  相似文献   

14.
Thin monofilamentary Fe/MgB2 superconducting wires without barriers are investigated by means of electrical transport measurements and surface and structural analysis methods. Small diameter wires are fabricated by pellet-in-tube method (PeIT) to obtain a high uniform initial filling density and heat treated as a function of various sintering temperatures and times. The results are discussed in terms of the grain connectivity, Fe2B phase formation, and the relation between wire diameter and sintering conditions. We suggest that PeIT has a crucial importance to achieve homogeneous initial filling density, which leads to the fabrication of uniform long-length MgB2 wires.  相似文献   

15.
Samples of MgB2 pure phase, with Ni nanoparticles addition, were prepared using a solid diffusion reaction method. Clearly, the Ni nanoparticles act as effective pinning centers and enhance the critical current density values, especially for a sample with 0.5%Ni. A negligible amount of Ni diffuses inside the MgB2 grains, thus having a small effect on the transition temperature, which remains around 37.5 K.  相似文献   

16.
Short powder-in-tube tapes of MgB2 in the Fe sheath were fabricated by ex situ route from a commercial powder containing some free Mg and MgO impurity phases. The final heat treatment was performed by spark plasma sintering (SPS). Tapes were with open (OT) or closed (CT) endings. Closed endings were made by folding and pressing. The MgB2 core of the OT sample has shown a higher low-field critical current density, a higher maximum pinning force, a slightly higher disorder, smaller average MgB2 crystallite size, a weak contact between Fe and MgB2 core, and more macro-flux jumps. The upper and irreversibility fields were similar for OT and CT samples. In the center of the MgB2 cores, the detected impurity phase is MgO, while at the interface with Fe, MgB4 also occurs. Impurity phases found at interface, MgO and MgB4, are present in the center of the bulk SPSed samples. Reactions and pinning-force-related parameters are discussed with respect to Mg behavior influenced by condition of endings. It is inferred that the presence of free Mg in the raw MgB2 powder has an important contribution to observed differences, and its removal or control is recommended.  相似文献   

17.
The Zn2SiO4 ceramics with the addition of BaO and B2O3 are fabricated by traditional solid-state preparation process at a sintering temperature of 900 °C. The introduction of BaO and B2O3 to the binary system ZnO-SiO2 is achieved by adding 10 and 20 wt. % flux BB to the mixed ZnO-SiO2 ceramic powders pre-sintered at 1,100 °C, respectively. The chemical composition of the flux BB (50 wt.%BaO-50 wt.% B2O3) is located at a liquid phase zone with a temperature range of about 869–900 °C in the binary diagram BaO-B2O3. In addition, the introduction of BaO and B2O3 to the binary system ZnO-SiO2 is also achieved by the means of a chemical combination of H2SiO3, H3BO3, ZnO and Ba(OH)2·8H2O, which can result in the formation of the hydrated barium borates with low melting characteristics. In turn, by the liquid sintering aid of the barium borate melts, the preparation process of the Zn2SiO4 ceramics can be further simplified. In the two preparation methods, the Zn2SiO4 ceramics with the 1.5–2.0 ZnO/SiO2 molar ratios and the addition of a 10 wt. % flux BB can show good dielectric properties whereas the bending strength mainly depends on the microstructure of the Zn2SiO4 ceramics and SiO2 content in the composition of the specimen.  相似文献   

18.
We have studied the effect of manganese dioxide (5–20 wt %) on the formation of calcium monoaluminate in the CaO-Al2O3 system during solid-state sintering of five oxide mixtures corresponding to the known calcium aluminates at temperatures from 1100 to 1400°C. X-ray diffraction examination indicated the formation of calcium manganates. The mixture of the calcium manganates melts at 1330°C, promoting the sintering process and the reaction between the calcium oxide and alumina and raising the yield of calcium monoaluminate as the dominant phase. The calcium manganates are shown to be nonreactive with the forming calcium aluminates. The X-ray diffraction results are supported by scanning electron microscopy data for a number of samples.  相似文献   

19.
An original two-stage liquid-phase hot explosive compaction (HEC) procedure of Mg-B precursors above 900 °C provides the formation of superconductivity MgB2 phase in the whole volume of billets with maximal T c = 38.5 K without any further sintering. The liquid-phase HEC strongly increases the solid-state reaction rate similar to photostimulation, but in this case, due to the high penetrating capability of shock waves in a whole volume of cylindrical billets and consolidation of MgB2 precursors near to theoretical density allows one to produce bulk, long-body cylindrical samples important for a number practical applications.  相似文献   

20.
Mg-based hydrogen-storage materials with the compositions of Mg–10 wt%oxide (oxide = Cr2O3, Fe2O3, MnO, and SiO2) and Mg–xFe2O3yNi were prepared by reactive mechanical grinding (RMG). Taking into consideration the hydriding and dehydriding rates and the cost of materials, Fe2O3 prepared by spray conversion is an appropriate oxide additive to Mg. Mg–5 wt%Fe2O3–15 wt%Ni exhibited the best hydrogen-storage performance among the Mg–xFe2O3yNi hydrogen materials. It stored 5.47 wt%H under 1.2 MPa H2 for 60 min and released 5.42 wt%H under 0.1 MPa H2 for 15 min at 593 K. The addition of Fe2O3 and Ni to Mg by the RMG shortens the diffusion distances through the reduction of the particle size of Mg. These additives are also considered to facilitate nucleation by creating many defects on the surface and in the interior of Mg. The added Fe2O3 and Ni themselves may also act as active sites for the nucleation. Ni forms the Mg2Ni phase by a reaction with Mg, and Fe appears from the reduction of Fe2O3 by hydrogen after hydriding–dehydriding cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号