首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
二步煅烧法制备高振实密度钛酸锂负极材料   总被引:1,自引:0,他引:1  
以Li2CO3和纳米TiO2为原料,通过二步煅烧固相反应法制备Li4Ti5O12负极材料。研究前驱体球磨以及球磨时间对合成Li4Ti5O12样品振实密度和电化学性能的影响。借助XRD、SEM、振实密度仪和充放电测试仪、电化学综合测试仪表征Li4Ti5O12材料的物理性能和电化学性能。结果表明:球磨工艺能够提高Li4Ti5O12的纯度,并有效提高其振实密度和电化学性能;球磨时间为2 h时,所得材料的振实密度达1.70 g/cm3,0.1C首次放电比容量为174 mA.h/g,5C放电比容量达124.2 mA.h/g。  相似文献   

2.
采用溶胶-凝胶法制备了LiFePO4/C正极材料.采用X射线衍射(XRD)、扫描电镜(SEM)和电化学手段对材料进行了结构表征和性能测试.研究了其前驱体体系pH值对材料性能的影响.结果表明:当前驱体体系pH值为8.4时,LiFePO4/C正极材料具有最佳的电化学性能.在0.1C倍率下充放电,磷酸铁锂首次放电比容量为16...  相似文献   

3.
利用固相法合成了镧离子掺杂的Li1-xLaxFePO4正极材料,采用XRD,SEM和充放电性能表征了材料的晶体结构、微观形貌和电化学性能。研究表明,少量La^3+的掺杂未影响到LiFePO4的晶体结构,但显著改变了粉体的微观形貌,降低颗粒粒度至纳米级,改善了可逆容量和循环性能。得到的最佳配比正极材料Li0.99La0.01FePO4,在C/20的充放电速率下,其初始可逆放电容量达到理论容量的73%——123mAh/g,20次充放电循环后表现出良好的容量可循环性,容量没有衰减。引入稀土离子是提高磷酸铁锂新型锂离子正极材料电化学性能的有效方法。  相似文献   

4.
反应物中锂元素的量对LiFePO4/C电化学性能的影响   总被引:1,自引:0,他引:1  
以Fe2O3和LiH2PO4为原料,葡萄糖为碳源,采用碳热还原法合成了LiFePO4/C正极材料,考察了反应物中锂元素的量对正极材料LiFePO4/C电化学性能的影响。用X射线衍射、扫描电镜(SEM)和恒电流充放电测试和循环伏安法对正极材料的结构、形貌以及电化学性能进行了研究。结果表明:当反应物中额外添加锂元素的量是理论量的10%时,制得的正极材料的电化学性能最佳,在0.2和1C(1C=170mA/g)的充放电倍率下,首次放电比容量分别为156.3和137.5mAh/g,经过20次充放电循环后,容量基本保持不变。  相似文献   

5.
采用喷雾干燥结合低温微波水热法制备了石墨烯/LiFePO<sub>4</sub>复合正极材料,利用SEM、XRD、DLS等对其微观形貌、结构、粒度分布进行了表征,并利用恒流充放电、CV、EIS等测试研究了复合正极材料的电化学性能和电极动力学过程。结果表明,与未包覆的样品相比,石墨烯包覆的LiFePO<sub>4</sub>具有优异的倍率性能(5C放电比容量为125.4 mAh?g<sub>-1</sub>)和循环稳定性(1C条件下100次充放电后容量保持率在95%左右)。包覆石墨烯后LiFePO<sub>4</sub>正极材料的电荷迁移电阻减小,电化学可逆性增强,从而提高了材料的倍率性能。本文提供了一条提高磷酸铁锂正极材料电化学性能的简便途径,具有良好的应用前景。  相似文献   

6.
综述了近年来有关于层状LiNixCoyMn1-x-yO2正极材料的研究进展,重点介绍了LiNi1/3Co1/3Mn1/3O2的结构及4种主要合成方法--高温固相法、共沉淀法、溶胶-凝胶法和喷雾干燥法,比较了不同合成方法及组成对材料性能的影响.层状LiNixCoyMn1-x-yO2正极材料具有价格低廉,热稳定性好,容量高等优点,但由于其制备比较困难,振实密度低,高倍率放电性能不好,影响了其商业化的进程.因此,探索新的制备方法,对材料进行掺杂和包覆改性,进一步提高正极材料的振实密度和电化学性能仍是今后的研究热点.  相似文献   

7.
以柠檬酸为碳源和螯合剂,通过溶胶-凝胶法制备了LiFePO_4/CNT复合正极粉体材料.利用XRD和SEM表征了复合粉体的结构.复合材料含有单一的磷酸铁锂相,碳纳米管在正极材料中将颗粒与颗粒相连,为颗粒之间提供了附加的导电通路.通过添加碳纳米管的方法对正极材料导电通路进行改善.在低速率下容量可以达到135 mAh/g,在1 C充放电速率下容量保持在110 mAh/g,2 C时容量保持在80 mAh/g.随着碳纳米管含量的增加,锂离子电池的容量也增加.  相似文献   

8.
为提高Li4Ti5O12材料的振实密度,以十六烷基三甲基溴化铵(CTAB)为结构导向剂,通过溶胶-凝胶法合成了球形Li4Ti5O12材料。利用TGA/DSC、XRD、SEM、CV和恒流充放电仪对材料的结构、形貌和电化学性能进行测试。结果表明,在800℃热处理12 h所得样品为单一的尖晶石晶体结构,结晶度较高,颗粒基本呈规则球形、流动性较好,粒径分布均匀,并表现出较好的电化学性能,振实密度达1.86 g/m L。在室温下以0.1 C充放电时,其首次放电比容量为173.19 m Ah/g,50次充放电循环后其放电比容量保持率为97.4%。  相似文献   

9.
锰酸锂被认为是取代商品锂离子电池正极材料LiCoO2的候选材料,以二氧化锰、碳酸锂为原料,在空气气氛下进行烧结,控制烧结温度和时间,制备锂离子电池正极材料锰酸锂。用X射线衍射仪、电子扫描电镜对产物的结构特征、微观表面形貌和恒流充放电性能进行了表征。结果表明:所制得的正极材料为尖晶石型锰酸锂,结晶度高、无杂质相、材料颗粒的粒径均匀,首次充放电比容量为117.3 mAh/g(0.2C,3.3~4.4V);50次循环后,放电比容量为107.9 mAh/g,不可逆容量损失为9.4 mAh/g,比容量保持率为92.0%,得到了很好的综合电化学性能。  相似文献   

10.
利用低共熔组成的0.24LiCO3-0.76LiOH混合锂盐体系,与钴、镍、锰的球形氢氧化物按1.1:1混合,无需前期球磨,直接经二段控温程序制备出锂离子正极材料LiNi1/3Co1/3Mn1/3O2。X射线衍射分析表明合成的Li(Ni1/3Co1/3Mn1/3)O2结晶度高,具有规整的层状α-NaFeO2结构,扫描电镜显示产物颗粒均匀,振实密度高达2.89g·cm-3,显著高于用单一锂盐制备的同样产品(2.4g·cm-3)。充放电测试表明,材料具有良好的电性能,首次充放电容量为176和166mhA·g-1,循环50次后,材料的电性能没有明显的衰减。  相似文献   

11.
采用1,2-丙二醇作为表面活性剂,在水热反应中合成正极材料LiFePO4。用XRD、SEM、粒径分布测试和恒电流充放电方法,分别研究了1,2-丙二醇对LiFePO4的结构、形貌、粒径和电化学性能的影响。结果表明:加入适量的丙二醇不改变LiFePO4的橄榄石结构,但可使材料的结晶粒度变小,粒径分布变得均匀;当丙二醇加入量为10 mL时,得到的LiFePO4平均粒径d(0.5)=1.128μm,粒径分布范围为0.316~6.607μm;该材料在0.2C倍率下的首次放电比容量为144 mAh/g,循环性能良好。  相似文献   

12.
电极材料是推进电池技术发展及应用的关键。作为锂离子电池正极材料的LiFePO4表现出优异的电池性能(大容量、优异循环特性),但也有本征低电导率的缺点。具有橄榄石结构的LiFePO4在电池充放电过程发生FePO4与LiFePO4之间的相变,已有实验证明充放电过程中出现固溶体LixFePO4。掺杂是提高材料电导率的常用手段,但LiFePO4的掺杂却一直饱受争议;缺陷化学的研究初步认定通过适当点缺陷的电荷补偿,晶体内引入掺杂元素是可以实现的,并且提出几种缺陷补偿机制。导电相复合可降低电极颗粒间的接触电阻,特别是LiFePO4的碳包覆有效地改善其电化学性能,促进其工业化推广;碳包覆的有效性取决于碳的sp2杂化键的比例及碳含量。由于电极材料形貌影响电池的充放电动力学过程,LiFePO4的颗粒尺寸、形状、表面粗糙度等的控制都成为提高电池性能的重要手段;LiFePO4的薄膜制备及三维构架技术则进一步推动微型电池的应用发展。  相似文献   

13.
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4及其Ni^2+掺杂正极材料,采用XRD,SEM和充放电等方法对目标材料进行了表征。XRD分析表明,掺杂少量Ni^2+后的LiFePO4晶体结构并未发生变化;SEM观察发现,掺杂后,样品的粒径变小;充放电测试得出,比未掺杂的LiFePO4具有更好的电化学性能,首次放电比容量达145mAh·g^-1,高于纯的LiFePO4正极材料的容量90mAh·g^-1,经100次循环后掺杂Ni^2+的LiFePO4和LiFePO4样品的容量保有率分别为91%和53%。  相似文献   

14.
LiFePO4/C composites with good rate capability and high energy density were prepared by adding sugar to the synthetic precursor, A significant improvement in electrode performance was achieved. The resulting carbon contents in the sample 1 and sample 2 are 3.06% and 4.95% (mass fraction), respectively. It is believed that the synthesis of LiFePO4 with sugar added before heating is a good method because the synthesized particles having uniform small size are covered by carbon. The performance of the cathodes was evaluated using coin cells. The samples were characterized by X-ray diffraction and scanning electron microscope observation. The addition of carbon limits the particles size growth and enables high electron conductivity. The LiFePO4/C composites show very good electrochemical performance delivering about 142 mAh/g specific capacity when being cycled at the C/10 rate. The capacity fade upon cycling is very small.  相似文献   

15.
An Al-doped spinel lithium manganese oxide was prepared by the adipic acid-assisted sol-gel method at 800℃, and the cathode materials (Liml0.05Mnl.9504) with different particle sizes were obtained through ball milling. The effects of particle size on the electrochemical performance of LiAl0.05Mnl.9504 samples were investigated by differential thermal analysis and thermogravimetry, X-ray diffraction, galvanostatic charge-discharge test, cyclic voltammetry, and electrochemical impedance spectroscopy. The results indicate that all samples with different particle sizes show the same pure spinel phase and good crystal structure; LiAlo.osMnl.9504 with Dso = 17.3 μm shows better capacity retention; LiAlo.osMnl.gsO4 cathode materials with small particle size have a bigger resistance of charge transfer than the large one, and the particle size has significant effects on the electrochemical performance of Al-doped spinel LiMn2O4 cathode materials.  相似文献   

16.
La3+ was selected to elevate the lattice electronic conductivity of LiFePO4,and LiFePO4/(C+La3+) cathode powders were synthesized by microwave heating using a domestic microwave oven for 35 min. The microstructures and morphologies of the synthesized materials were investigated by XRD and SEM. The electrochemical performances were evaluated by galvanostatic charge-discharge. The electrochemical performance of LiFePO4 with different La3+ contents was studied. Results indicated that the initial specific disch...  相似文献   

17.
纳米LiFePO4正极材料由于具有颗粒小、比表面积大的优势,是改善其动力学性能的有效手段,但由于较差的加工性能使其发展受限。通过纳微组装制备一次粒子为纳米颗粒,二次粒子为微米颗粒的微纳米LiFePO4正极材料可以改善纳米材料的加工性能。本文综述了近期微纳米LiFePO4正极材料的研究方向,主要介绍了规则形貌的微纳米LiFePO4正极材料的研究进展。  相似文献   

18.
以FeSO4·7H2O、H3PO4、H2O2和尿素为原料,采用均匀沉淀法制备LiFePO4的前驱体FePO4·xH2O,研究表面活性剂PEG对前驱体FePO4·xH2O形貌的影响。并将获得的FePO4·xH2O与Li2CO3及葡萄糖混合后合成LiFePO4/C。利用XRD、SEM、循环伏安测试、电化学性能测试、交流阻抗测试等手段对LiFePO4/C进行表征。结果表明:当不添加表面活性剂PEG时,FePO4·xH2O颗粒呈球形,但团聚现象严重;添加PEG后,颗粒较分散,形貌为多面体,合成的LiFePO4/C在0.1C时的首次放电比容量为151.0 mA·h/g,倍率性能好,振实密度达1.44 g/cm3。  相似文献   

19.
采用分步碳包覆法合成LiFePO4/C复合材料。首先,将原料Fe2O3、NH4H2PO4和葡萄糖经过固相反应合成Fe2P2O7/C复合材料,再将Fe2P2O7/C与前驱体Li2CO3、葡萄糖混合,通过二次碳包覆工艺合成LiFePO4/C复合材料,并考察合成温度对LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜、差热-热重分析、电化学阻抗谱(EIS)和充放电测试对材料的性能进行表征。结果表明:以制取的Fe2P2O7/C为前驱体合成的LiFePO4/C复合材料具有较好的物理和电化学性能,材料的振实密度达1.26 g/m3,0.1C放电容量为158.3 mA.h/g,1C初次放电比容量达到140 mA.h/g。  相似文献   

20.
采用稀土金属离子(Er3+、Y3+、Nd3+)分别对LiFePO4的Li、Fe原子位进行掺杂,通过X射线衍射(XRD)、恒电流充放电及电化学阻抗(EIS)法系统地研究掺杂对LiFePO4结构和性能的影响。结果表明:掺杂试样的微观结构和性能与掺杂离子半径、取代位置密切相关。LiFe0.99Y0.01PO4试样具有最佳的电化学性能,在15mA.g-1放电电流密度下首次放电容量达到149.8mAh.g-1,当电流密度增加到300mA.g-1时,放电容量为134.3mAh.g-1,经过50次循环充放电后,放电容量保持率为99.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号