共查询到20条相似文献,搜索用时 0 毫秒
1.
This article describes a mixed constrained image filter design with fault tolerance using particle swarm optimization (PSO)
on a reconfigurable processing array. There may be some faulty configurable logic blocks (CLBs) in a reconfigurable processing
array. The proposed method with PSO autonomously synthesizes a filter fitted to the reconfigurable device with some faults
in order to optimize the complexity and power of the circuit, and the signal delay in both the CLBs and the wires. An image
filter for noise reduction is experimentally synthesized to verify the validity of our method. By evolution, the quality of
the optimized image filter on a reconfigurable device with a few faults is almost same as that on a device with no faults. 相似文献
2.
This article describes an evolutionary image filter design for noise reduction using particle swarm optimization (PSO), where
mixed constraints on the circuit complexity, power, and signal delay are optimized. First, the evaluated values of correctness,
complexity, power, and signal delay are introduced to the fitness function. Then PSO autonomously synthesizes a filter. To
verify the validity of our method, an image filter for noise reduction was synthesized. The performance of the resultant filter
by PSO was similar to that of a genetic algorithm (GA), but the running time of PSO is 10% shorter than that of GA. 相似文献
3.
Color images captured under various environments are often not ready to deliver the desired quality due to adverse effects caused by uncontrollable illumination settings. In particular, when the illuminate color is not known a priori, the colors of the objects may not be faithfully reproduced and thus impose difficulties in subsequent image processing operations. Color correction thus becomes a very important pre-processing procedure where the goal is to produce an image as if it is captured under uniform chromatic illumination. On the other hand, conventional color correction algorithms using linear gain adjustments focus only on color manipulations and may not convey the maximum information contained in the image. This challenge can be posed as a multi-objective optimization problem that simultaneously corrects the undesirable effect of illumination color cast while recovering the information conveyed from the scene. A variation of the particle swarm optimization algorithm is further developed in the multi-objective optimization perspective that results in a solution achieving a desirable color balance and an adequate delivery of information. Experiments are conducted using a collection of color images of natural objects that were captured under different lighting conditions. Results have shown that the proposed method is capable of delivering images with higher quality. 相似文献
4.
To the best of our knowledge, currently the physical model based method is still an ill posed problem. Additionally, the image enhancement approaches also suffer from the texture preservation issue. Retinex-based approach is proved its effectiveness in image dehazing while the parameter should be turned properly. Therefore, in this paper, the particle swarm optimization (PSO) algorithm is firstly performed to optimize the parameter and the hazed image is converted into hue, saturation, intensity(HSI) for color compensation, In the other hand, the multi-scale local detail upgrading and the bilateral filtering approaches are designed to overcome the dehazing artefacts and edge preservation, which could further improve the overall visual effect of images. Experimental results on natural and synthetic images by using qualitative analysis and frequently used quantitative evaluation metrics illustrate the approving defogging effect of the proposed method. For instance, in a natural image road, our method achieves the higher e for 0.63, γ for 3.21 and H for 7.81, respectively and lower σ for 0.04. In a synthetic image poster, the higher PSNR for 18.17 and SSIM for 0.78 are also acquired compared to other explored approaches in this paper. Besides, the results performed on other underwater and aerial images in this study further demonstrates its defog effectiveness. 相似文献
5.
This article proposes an algorithm to search for solutions which are robust against small perturbations in design variables.
The proposed algorithm formulates robust optimization as a bi-objective optimization problem, and fi nds solutions by multi-objective
particle swarm optimization (MOPSO). Experimental results have shown that MOPSO has a better performance at fi nding multiple
robust solutions than a previous method using a multi-objective genetic algorithm. 相似文献
6.
A new dynamic clustering approach (DCPSO), based on particle swarm optimization, is proposed. This approach is applied to image segmentation. The proposed approach automatically determines the “optimum” number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the “best” number of clusters is selected. The centers of the chosen clusters is then refined via the K-means clustering algorithm. The proposed approach was applied on both synthetic and natural images. The experiments conducted show that the proposed approach generally found the “optimum” number of clusters on the tested images. A genetic algorithm and random search version of dynamic clustering is presented and compared to the particle swarm version. 相似文献
7.
医学图像配准是图像融合等图像处理需要先行解决的问题.首先用坎尼算子提取图像的边缘,再用K均值聚类算法进行聚类分析提取轮廓特征点,然后引入了带有量子行为的粒子群优化算法来求解配准所需的空间变换参数.实验结果表明,QPSO能够迅速地在全局范围内找到最优解,应用于多模态医学图像配准是可行的. 相似文献
8.
将免疫粒子群优化算法和非完全Beta函数结合,提出了一种自适应图像对比度增强方法.该免疫粒子群优化算法结合了粒子群优化算法具有的全局寻优能力和免疫系统的免疫信息处理机制,改善了粒子群优化算法摆脱局部极值点的能力.利用免疫粒子群优化算法自动搜索最佳的灰度变换参数,从而获得一条最佳的灰度变换曲线,实现对图像进行全局增强处理.实验结果表明,该算法不仅能有效地提高图像整体对比度和视觉效果,而且适合图像的自动化处理. 相似文献
10.
Imperceptibility, security, capacity, and robustness are among many aspects of image watermarking design. An ideal watermarking system should embed a large amount of information perfectly securely, but with no visible degradation to the host image. Many researchers have geared efforts towards developing specific techniques for variant applications. In this paper, we propose an adjustable-purpose, reversible and fragile watermarking scheme for image watermarking by particle swarm optimization (PSO). In general, given any host image and watermark, our scheme can provide an optimal watermarking solution. First, the content of a host image is analyzed to extract significant regions of interest (ROIs) automatically. The remaining regions of non-interest (RONIs) are collated for embedding watermarks by different amounts of bits determined by PSO to achieve optimal watermarking. The parameters can be adjusted relying upon user’s watermarking purposes. Experimental results show that the proposed technique has accomplished higher capacity and higher PSNR (peak signal-to-noise ratio) watermarking. 相似文献
11.
Combinatorial Particle Swarm Optimization (CPSO) is a relatively recent technique for solving combinatorial optimization problems. CPSO has been used in different applications, e.g., partitional clustering and project scheduling problems, and it has shown a very good performance. In partitional clustering problem, CPSO needs to determine the number of clusters in advance. However, in many clustering problems, the correct number of clusters is unknown, and it is usually impossible to estimate. In this paper, an improved version, called CPSOII, is proposed as a dynamic clustering algorithm, which automatically finds the best number of clusters and simultaneously categorizes data objects. CPSOII uses a renumbering procedure as a preprocessing step and several extended PSO operators to increase population diversity and remove redundant particles. Using the renumbering procedure increases the diversity of population, speed of convergence and quality of solutions. For performance evaluation, we have examined CPSOII using both artificial and real data. Experimental results show that CPSOII is very effective, robust and can solve clustering problems successfully with both known and unknown number of clusters. Comparing the obtained results from CPSOII with CPSO and other clustering techniques such as KCPSO, CGA and K-means reveals that CPSOII yields promising results. For example, it improves 9.26 % of the value of DBI criterion for Hepato data set. 相似文献
12.
投资组合优化问题是NP难解问题,通常的方法很难较好地接近全局最优.在经典微粒群算法(PSO)的基础上,研究了基于量子行为的微粒群算法(QPSO)的单阶段投资组合优化方法,具体介绍了依据目标函数如何利用QPSO算法去寻找最优投资组合.在具体应用中,为了提高算法的收敛性和稳定性对算法进行了改进.利用真实历史数据进行验证,结果表明在解决单阶段投资组合优化问题时,基于QPSO算法的投资组合优化的性能比PSO算法更加优越,且QPSO算法在投资组合优化领域具有很大的实际应用价值. 相似文献
13.
Clustering is a significant data mining task which partitions datasets based on similarities among data. This technique plays a very important role in the rapidly growing field known as exploratory data analysis. A key difficulty of effective clustering is to define proper grouping criteria that reflect fundamentally different aspects of a good clustering solution such as compactness and separation of clusters. Moreover, in the conventional clustering algorithms only a single criterion is considered that may not conform to the diverse and complex shapes of the underlying clusters. In this study, partitional clustering is defined as a multiobjective optimization problem. The aim is to obtain well-separated, connected, and compact clusters and for this purpose, two objective functions have been defined based on the concepts of data connectivity and cohesion. These functions are the core of an efficient multiobjective particle swarm optimization algorithm, which has been devised for and applied to automatic grouping of large unlabeled datasets. A comprehensive experimental study is conducted and the obtained results are compared with the results of four other state-of-the-art clustering techniques. It is shown that the proposed algorithm can achieve the optimal number of clusters, is robust and outperforms, in most cases, the other methods on the selected benchmark datasets. 相似文献
14.
This paper presents a novel robust watermarking approach called FuseMark based on the principles of image fusion for copy protection or robust tagging applications. We consider the problem of logo watermarking in still images and employ multiresolution data fusion principles for watermark embedding and extraction. A human visual system model based on contrast sensitivity is incorporated to hide a higher energy hidden logo in salient image components. Watermark extraction involves both characterization of attacks and logo estimation using a rake-like receiver. Statistical analysis demonstrates how our extraction approach can be used for watermark detection applications to decrease the problem of false negative detection without increasing the false positive detection rate. Simulation results verify theoretical observations and demonstrate the practical performance of FuseMark. 相似文献
15.
This paper presents a new method for three dimensional object tracking by fusing information from stereo vision and stereo audio. From the audio data, directional information about an object is extracted by the Generalized Cross Correlation (GCC) and the object’s position in the video data is detected using the Continuously Adaptive Mean shift (CAMshift) method. The obtained localization estimates combined with confidence measurements are then fused to track an object utilizing Particle Swarm Optimization (PSO). In our approach the particles move in the 3D space and iteratively evaluate their current position with regard to the localization estimates of the audio and video module and their confidences, which facilitates the direct determination of the object’s three dimensional position. This technique has low computational complexity and its tracking performance is independent of any kind of model, statistics, or assumptions, contrary to classical methods. The introduction of confidence measurements further increases the robustness and reliability of the entire tracking system and allows an adaptive and dynamical information fusion of heterogenous sensor information. 相似文献
16.
This paper proposes a novel binary particle swarm optimization (PSO) algorithm using artificial immune system (AIS) for face recognition. Inspired by face recognition ability in human visual system (HVS), this algorithm fuses the information of the holistic and partial facial features. The holistic facial features are extracted by using principal component analysis (PCA), while the partial facial features are extracted by non-negative matrix factorization with sparseness constraints (NMFs). Linear discriminant analysis (LDA) is then applied to enhance adaptability to illumination and expression. The proposed algorithm is used to select the fusion rules by minimizing the Bayesian error cost. The fusion rules are finally applied for face recognition. Experimental results using UMIST and ORL face databases show that the proposed fusion algorithm outperforms individual algorithm based on PCA or NMFs. 相似文献
17.
In terms of the varying number of cell population, shape deformation, collision and uneven movement, a novel method based on multi-task particle swarm optimization (PSO) algorithm without explicit detection module, named MTPSO tracking method, is developed for automatic tracking of biological cells in time-lapse low-contrast microscopy image sequences. For tracking existing cells from the previous frames, a PSO-based tracking module is firstly implemented to give the initial positions of existing cells according to the previous estimated state of each cell, then a PSO-based contour module is proposed to determine the corresponding contour of each cell and finally achieve a precise position tracking by an iterative centroid updating process. For tracking new appearing cells at the current frame, a PSO-based discovery module, followed by the aforementioned PSO-based contour module, is proposed to search for new potential cells through appropriate initialization of particle swarm and searching mechanism. MTPSO tracking method is tested over a number of different real cell image sequences and is shown to provide high accuracy both in position and contour estimate of each cell in various challenging cases. Furthermore, it is more competitive against the state-of-the-art multi-object tracking methods in terms of performance measures such as FAR, FNR, LTR, and LSR. 相似文献
18.
设计了一种用于图像配准的优化算法.根据图像灰度和空间结构信息,构造一个基于最大化互信息的配准测度函数,结合一种适用于图像自动配准的文化粒子群优化(CIPSO)算法.新的配准算法在搜索空间上进行优化设置,将整个搜索空间分成群体空间、信念空间两组.群体空间的粒子不仅根据自己空间的个体最优和全局最优来优化自己,还与信念空间中的最优个体进行交互学习,加速粒子群的收敛速度,克服了图像配准中计算量过大、搜索速度慢等问题.实验表明,与现有的PSO配准算法相比,提出的算法具有较好的鲁棒性和配准精确率. 相似文献
20.
The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate. 相似文献
|