首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eu3+ and Sm3+ co-doped CaMoO4 microclews have been successfully synthesized via a facile hydrothermal method directly in surfactant-free environment. The as-prepared phosphor present clew-like agglomerates composed of 40 nm nanosheets under the moderated reaction temperature. The red phosphor CaMoO4:Eu3+, Sm3+ can generate a strong absorption line at 405 nm, originating from 6H5/2 → 6P5/2 transition of Sm3+, which is suitable for the emission of the near-ultraviolet light-emitting diodes (∼400 nm). Energy transfer between Sm3+ and Eu3+ is detected from the varied photoluminescence spectra with different Eu3+ concentrations and the energy transfer mechanism is clarified via the photoluminescence spectra. When Sm3+ is excited (405 nm), the electron is excited from 6H5/2 to 6P5/2, and then relaxed to 4G5/2. It jumps from 4G5/2 to the lower levels corresponding to the emissions of Sm3+; meanwhile, the transfers from 4G5/2 state of Sm3+ ion to 5D0 state of Eu3+ ion come out. The transition of 5D1 → 7FJ (J = 0, 1, 2) does not appear indicating that the transfer from 4G5/2 state of Sm3+ to 5D0 state rather than 5D1 state of Eu3+ is the energy transfer pathway.  相似文献   

2.
A series of core-shell bifunctional magnetic-optical YVO4:Ln3+@Fe3O4 (Ln3+ = Eu3+ or Dy3+) nanocomposites have been successfully synthesized via two-step method. The nanocomposites have the advantage of high magnetic responsive and unique luminescence properties. The structure, luminescent and magnetic properties of the nanocomposites were investigated by XRD, TEM, PL and VSM. The maximum emission peaks of the nanocomposites are at 618 nm (doping Eu3+), 574 nm (doping Dy3+). The special saturation magnetization of the nanocomposites is 54 emu/g. The diameter of the nanocomposites is 400-900 nm.  相似文献   

3.
Using polyethylene glycol (PEG), Tween-80, sodium dodecyl sulphonate (SAS) and cetyltrimethylammonium bromide (CTAB) as surfactants, CaMoO4: Eu3+ red phosphors were prepared by co-precipitation method and their morphology, structure and luminescent properties were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and fluorescence spectrometer. The results showed that the introduction of surfactants did not change the crystal structure of CaMoO4: Eu3+ phosphors, but greatly influenced their morphology. CaMoO4: Eu3+ red phosphors were prepared with 5 wt% PEG20000 having small-sized and regularly spherical morphology, and there were greater improvement in the luminescent intensity than phosphors prepared with other surfactants.  相似文献   

4.
Three-dimensional flowerlike YBO3:Tb3+ phosphors have been successfully prepared by an efficient surfactant-free hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDS) spectrometry, selected area electron diffraction (SAED), photoluminescence (PL) spectra were used to characterize the samples. The as-obtained samples present flowerlike agglomerates composed of nanoflakes with thickness of 20 nm and high crystallinity in spite of the moderate reaction temperature of 180 °C. The reaction mechanism has been considered as a dissolution/precipitation mechanism; the self-assembly evolution process has been proposed on homocentric layer-by-layer growth style. The different luminescent intensity with different molar ratio of Y-Tb [Y:Tb = 8:2; 7:3; 6:4; 5:5; 4:6], YBO3:Tb3+ phosphors exhibit different light (white, red, green) under ultraviolet excitation, which might find potential applications in the fields such as light display systems and optoelectronic devices.  相似文献   

5.
Dy3+-activated β/α′-Sr2SiO4 phosphors were successfully prepared by solid-state reaction method with ammonium chloride (NH4Cl) as the flux. The influences of calcination temperatures, amounts of NH4Cl and the concentrations of Dy3+ on phase composition, morphology and the photoluminescent properties of as-prepared powders were investigated in detail. The β and α′ phases of Sr2SiO4 were obtained with 1 wt% and 2-5 wt% NH4Cl, respectively, as the sintered condition was at 1000 °C for 4 h. With increasing the amount of NH4Cl, the morphology of phosphors changed from needlelike to regular polyhedron shape and the colors of the Sr2SiO4:Dy3+ phosphors changed from blue-green to white. The luminescence intensity of 4F9/2 → 6H15/2 transition was slightly higher than that of 4F9/2 → 6H13/2L = 2, ΔJ = 2) transition owing to the low-symmetry around Dy3+ ions. The optimum concentration of Dy3+ was 2.0 mol% and the concentration quenching were caused by the d-d interaction and a cross relaxation. The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission did not to change with varying the Dy3+ concentration using Li+ ions for charge compensation. These indicate that this phosphor can be used as a potential candidate for the phosphor-converted white LEDs with a UV chip.  相似文献   

6.
A facile direct precipitation method has been developed for the synthesis of bifunctional magnetic-luminescent nanocomposites with Fe3O4 nanoparticles as the core and YVO4:Eu3+ as the shell. Transmission electron microscopy (TEM) images revealed that the obtained bifunctional nanocomposites had a core-shell structure and a spherical morphology. The average size was ∼150 nm, and the thickness of the shell was ∼15 nm. The X-ray diffraction (XRD) patterns showed that a cubic spinel structure of Fe3O4 core and a tetragonal phase of YVO4 shell were obtained. Fourier transform infrared (FT-IR) spectra confirmed that the YVO4:Eu3+ had been successfully deposited on the surface of Fe3O4 nanoparticles. Photoluminescence (PL) spectra indicated that the nanocomposites displayed a strong red characteristic emission of Eu3+. Magnetic measurements showed that the obtained bifunctional nanocomposites exhibited superparamagnetic behavior at room temperature. Therefore, the bifunctional nanocomposites are expected to develop many potential applications in biomedical fields.  相似文献   

7.
The core-shell structured LaInO3:Ln3+@SiO2 (Ln3+ = Sm3+, Tb3+) phosphors were realized by coating LaInO3:Ln3+ phosphors on the surface of silica microspheres via a modified Pechini sol-gel process. The phase, structure, morphology, and fluorescent properties of the materials were well characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform IR spectroscopy (FT-IR), photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, and the kinetic decays, respectively. The results reveal that the obtained core-shell structured phosphors consist of amorphous silica core and crystalline LaInO3:Ln3+ shell, which keep the uniform spherical morphology of pure silica spheres with narrow size distribution. Upon excitation by ultraviolet (UV) irradiation or electron beam, the phosphors show the characteristic emission lines of Sm3+ (4G5/2-6H5/2,7/2,9/2, orange) in LaInO3:Sm3+@SiO2 and characteristic emissions of Tb3+ (5D4-7F6,5,4,3, green) in LaInO3:Tb3+@SiO2, respectively. This kind of phosphors may have potential applications in field emission displays (FEDs) based on their uniform shape, low-cost synthetic route, and diverse luminescent properties.  相似文献   

8.
KSrPO4:Tb3+ phosphors were prepared by a solid-state method and their photoluminescence properties were investigated under vacuum ultraviolet excitation. In the excitation spectrum monitoring at 544 nm, the band in the region of 120-162 nm can be attributed to be the overlap of host absorption and charge transfer transition of O2− → Tb3+, and the band ranging from 162 to 300 nm was assigned to the f-d transition of Tb3+. The photoluminescence spectrum shows that the phosphors exhibited a strong green emission around 544 nm corresponding to the 5D4  7F5 transition of Tb3+ under the excitation of 147 nm. Optimal emission intensity was obtained when x = 7% in KSr1-xPO4:xTb3+ and the luminescent chromaticity coordinates were calculated to be (x = 0.317, y = 0.522) for KSr0.93PO4:7%Tb3+.  相似文献   

9.
The photoluminescence (PL) properties of SrIn2O4:Eu3+,Gd3+ and SrIn2O4:Eu3+,Sm3+ are investigated in this work. When the Gd3+ ions are introduced in this compound, the average distance metal-oxygen is increased, and then the vibration of lattice is decreased. It results in that the nonradiation of Eu3+ is decreased. Therefore, the emissions of SrIn2O4:Eu3+ are increased. However, little of energy transfer occurs from Gd3+ to Eu3+ ions. When the Sm3+ ions are introduced into SrIn2O4:Eu3+, the energy transfers occur from the CTS of O2−-Sm3+ to Sm3+ and Eu3+ ions, from the host absorption to Eu3+ ions, and from Sm3+ to Eu3+ ions, but not from the host absorption to Sm3+ ions.  相似文献   

10.
Eu2+-doped Sr3La(PO4)3 phosphors were synthesized by solid-state reaction method. Their luminescent properties were investigated. The phosphor could be excited by ultraviolet light effectively. The emission spectra exhibit two emission peaks located at 418 nm and 500 nm, respectively. These two peaks originated from two different luminescent centers, respectively. One is nine-coordinated Eu(I) center, other is six-coordinated Eu(II) center. It was found that the doping concentration of Eu2+ ions affected the shape of emission spectra. As the doping concentration increasing, Eu2+ ions are more likely to form Eu(I) luminescent centers and emit purple light.  相似文献   

11.
Mn4+, La3+ and Ho3+ doped MgAl2Si2O8-based phosphors were first synthesized by solid state reaction. They were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray powder diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). The phosphors were obtained at about 1300 °C. They showed broad red and fuchsia-pink emission bands in the range of 610-715 nm and had a different maximum intensity when activated by UV illumination. Such a fuchsia-pink emission can be attributed to the intrinsic d-d transitions of Mn4+.  相似文献   

12.
Singly doped and Tm3+/Ho3+ co-doped NaY(WO4)2 single crystals were grown successfully by Czochralski method. The room temperature polarized absorption and fluorescence spectra as well as the decay curves were measured. Spectroscopic parameters related to the laser operation around 2.0 μm via the 3F4 → 3H6 (Tm3+) and 5I7 → 5I8 (Ho3+) transitions have been evaluated. The energy level scheme and energy transfer processes of Tm3+ and Ho3+ were analyzed.  相似文献   

13.
A novel yellow phosphor of Dy3+ activated YNbTiO6 has been prepared by high temperature solid-state reaction, and its luminescence properties have been investigated. The excitation spectra monitored at 575 nm have several strong peaks from 350 to 480 nm. Under 365 nm excitation, the emission spectra of composition-optimized (Y0.9Dy0.1)NbTiO6 phosphor exhibit a dominant peak located at about 575 nm with the Commission Internationale de l’Eclairage (CIE) chromaticity coordinates of (0.385, 0.411). The energy transfer between Dy3+ is found to be through exchange interaction.  相似文献   

14.
Flower-like Y2(MoO4)3:Dy3+ phosphors have been synthesized via a co-precipitation approach with the aid of β-cyclodextrin. The crystal structure and morphology of the phosphors were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy), respectively. The excitation and emission properties of the phosphors were examined by fluorescence spectroscopy. The dependence of color coordinates on the Dy3+ doping concentration was analyzed. The energy transfer mechanism between Dy3+ ions was studied based on the Huang's theory, I-H and Van Uitert's models. It was concluded simultaneously from these three routes that the electric dipole-dipole interaction between Dy3+ ions is the main physical mechanism for the energy transfers between Dy3+.  相似文献   

15.
A low-cost ZnAl2O4:Mn2+ green nanophosphor for field emission display (FED) was successfully synthesized by the coprecipitation method and a two-step firing, firstly calcining at 1200 °C for 2 h in air and then annealing at 900 °C for 3 h in flowing NH3 gas. The effects of the preparation process and the Mn2+ concentration on optical properties of ZnAl2O4:Mn2+ were investigated. The phase composition, particle morphology, photoluminescence (PL) spectra of the ZnAl2O4:Mn2+ phosphor as well as low-voltage field emission properties of the FED device prepared by using the synthesized ZnAl2O4:Mn2+ phosphor were examined. Similar to ZnGa2O4:Mn2+, Mn2+-doped ZnAl2O4 showed two green emission bands centered at 508 and 517 nm, respectively, which originate from 4T1(4G)→6A1(6S) transitions of Mn2+ on Td and Oh sites. The PL intensity reached the maximum at 0.5 at.% Mn2+. Under the low-voltage excitation, the FED device exhibited bright green emission, high voltage brightness saturation, and high color purity.  相似文献   

16.
The Yb3+/Tm3+/Ho3+: Gd3Ga5O12 nano-crystals have been successfully prepared via a citric acid complex procedure. The luminescence spectra were measured and the up-conversion processes were discussed. By means of adjusting the doping concentrations of Yb3+/Tm3+/Ho3+, the red-green-blue up-conversion luminescence changed obviously. Results indicated that the ratio of red-green-blue up-conversion emissions enhanced heavily with the increasing concentrations of Tm3+ doped in the Yb3+/Tm3+/Ho3+:Gd3Ga5O12 nano-crystals, which was rooted in the three-photon resonant cross relaxation processes(1G4 (Tm) + 5I7 (Ho) → 3H5 (Tm) + 5S2 (Ho)). The tunable red-green-blue luminescence could be used in the fields of display, illumination, and photonics such as the white light generation.  相似文献   

17.
Spherical and rod like nanocrystalline Nd2O3 phosphors have been prepared by solution combustion and hydrothermal methods respectively. The Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 has been obtained with calcination at 900 °C for 3 h and the lattice parameters have been evaluated by Rietveld refinement. Surface morphology of Nd2O3 phosphors show the formation of nanorods in hydrothermal synthesis whereas spherical particles in combustion method. TEM results also confirm the same. Raman studies show major peaks, which are assigned, to Fg and combination of Ag + Eg modes. The PL spectrum shows a series of emission bands at ∼326-373 nm (UV), 421-485 nm (blue), 529-542 nm (green) and 622 nm (red). The UV, blue, green and red emission in the PL spectrum indicates that Nd2O3 nanocrystals are promising for high performance materials and white light emitting diodes (LEDs).  相似文献   

18.
Dysprosium-activated Sr3RE2(BO3)4 (RE = Y, La, Gd) phosphors were synthesized by a high temperature solid-state reaction method. The phase uniformity of the phosphors was characterized by X-ray powder diffraction (XRD) and the luminescence characteristics were investigated. The excitation spectra at 575 nm emission show strong spectral bands in the region of 300-500 nm. The emission spectra of the phosphors with 365 nm excitation show three bands centered at 484 nm, 575 nm and 680 nm, which originate from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 of Dy3+, respectively. The effect of Dy3+ concentration on the emission intensity of the phosphors was investigated. The fluorescence decay curves for 4F9/2 → 6H13/2 excited at 365 nm and monitored at λem of 575 nm were measured. The decay times decreased slowly with increasing Dy3+ doping concentration due to a trap capturing to resonance fluorescence transfer of the activated ions and due to the exchange interactions between activated ion pairs. In order to determine the type of interaction between activated ions, the concentration dependence curves (lg(I/x) versus lg x) of Sr3RE2(BO3)4:Dy3+ (RE = Y, La, Gd) were plotted. The concentration quenching mechanism of the 4F9/2 → 6H13/2 (575 nm) transition of Dy3+ is the d-d interaction. All results indicate these phosphors are promising white-color luminescent materials.  相似文献   

19.
Hexagonal Eu3+:NaGdF4 fluoride with average grains size of 20 nm was obtained from solution by a co-precipitation method. Morphology of the obtained powder was examined by XRD and TEM methods. Absence of the Eu3+-O2− charge-transfer band, expected in excitation spectrum at 260 nm indicates, that oxygen ions are not incorporated into a fluoride lattice. As-received fluoride contains considerable amounts of the water molecules, adsorbed at the surface of the material, which may be relatively easily removed by heating the powder at 300 °C. Thermal treatment at 650 °C is sufficient for removing of the OH groups built into fluoride lattice. Influence of method of synthesis as well as oxygen, water molecules and OH groups content on optical properties of the obtained phosphors is investigated and discussed by comparison with optical properties of the Eu3+:NaGdF4 fluoride synthesised by a solid-state reaction.  相似文献   

20.
Nanoparticles of Eu3+ doped Mg2SiO4 are prepared using low temperature solution combustion technique with metal nitrate as precursor and urea as fuel. The synthesized samples are calcined at 800 °C for 3 h. The Powder X-ray diffraction (PXRD) patterns of the sample reveled orthorhombic structure with α-phase. The crystallite size using Scherer's formula is found to be in the range 50-60 nm. The effect of Eu3+ on the luminescence characteristics of Mg2SiO4 is studied and the results are presented here. These phosphors exhibit bright red color upon excitation by 256 nm light and showed the characteristic emission of the Eu3+ ions. The electronic transition corresponding to 5D0 → 7F2 of Eu3+ ions (612 nm) is stronger than the magnetic dipole transition corresponding to 5D0 → 7F1 of Eu3+ ions (590 nm). Thermoluminescence (TL) characteristics of γ-rayed Mg2SiO4:Eu3+ phosphors are studied. Two prominent and well-resolved TL glows with peaks at 202 °C and 345 °C besides a shoulder with peak at ∼240 °C are observed. The trapping parameters-activation energy (E), order of kinetics (b) and frequency factor (s) are calculated using glow curve shape method and the results obtained are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号