首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
《Advanced Robotics》2013,27(12):1361-1377
We consider the task of controlling a large team of non-holonomic ground robots with an unmanned aerial vehicle in a decentralized manner that is invariant to the number of ground robots. The central idea is the development of an abstraction for the team of ground robots that allows the aerial platform to control the team without any knowledge of the specificity of individual vehicles. This happens in much the same way as a human operator can control a single robot vehicle by simply commanding the forward and turning velocities without a detailed knowledge of the specifics of the robot. The abstraction includes a gross model of the shape of the formation of the team, and information about the position and orientation of the team in the plane. We derive controllers that allow the team of robots to move in formation while avoiding collisions and respecting the abstraction commanded by the aerial platform. We propose strategies for controlling the physical spread of the ensemble of robots by splitting and merging the team based on distributed techniques. We provide simulation and experimental results using a team of indoor mobile robots and a three-dimensional, cable-controlled, parallel robot which serves as our indoor unmanned aerial platform.  相似文献   

2.
Communication between robots is key to performance in cooperative multi-robot systems. In practice, communication connections for information exchange between all robots are not always guaranteed, which adds difficulty in performing state estimation. This paper examines the decentralized cooperative simultaneous localization and mapping (SLAM) problem, in which each robot is required to estimate the map and all robot states under a sparsely-communicating and dynamic network. We show how the exact, centralized-equivalent estimate can be obtained by all robots in the network in a decentralized manner even when the network is never fully connected. Furthermore, a robot only needs to consider its own knowledge of the network topology in order to detect when the centralized-equivalent estimate is obtainable. Our approach is validated through more than 250 min of hardware experiments using a team of real robots. The resulting estimates are compared against accurate groundtruth data for all robot poses and landmark positions. In addition, we examined the effects of communication range limit on our algorithm’s performance.  相似文献   

3.
简单介绍了NuBot机器人的两个主要组成部分:全向视觉和全向运动系统,并给出了运动学分析.基于该机器人平台,提出了D-A和D-D控制两种跟踪算法.通过机器人之间的相对定位和局部通信,实现了多机器人编队的分布式控制,同时,该算法可对机器人朝向进行独立控制.针对不同情况下的编队避障问题,提出了编队变形和编队变换两种方法.仿真和实际机器人实验表明,D-A控制方法能够实现平滑的编队变换;编队变形方法能够在尽量保持原始队形的情况下保证编队顺利避障.  相似文献   

4.
In this paper, a protocol and a control law are designed for a single robot so that a team of such robots can interact and cooperate to reach the displacements from an eligible reference formation. Each robot is equipped with displacement sensors of limited sensing ranges. Communication channels are assumed to be unavailable to the team, and each robot works in stealth mode. The team is scalable such that new robots can be recruited, and existing robots can be dismissed. In order for the team size to be scalable, the extended formation based on relative displacement is established as the reference formation. Thus, using the extended formation as a reference, the control law and the protocol could be flexible. As potential conflicts deflect the robot team from the desired formation, the control law is designed to expose the conflicts to the involved neighboring robots such that the protocol can resolve them. A numerical example is given to illustrate how an extended formation is designed, and a simulation example is conducted to demonstrate the performance and merits of the proposed techniques. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is on cooperative localization and control of multiple heterogeneous robots utilizing a string formation. This formation is preferred, since robots can move along a narrow passage utilizing this formation. Dead reckoning localization based on inertial measurement units leads to accumulated localization error. To avoid the error accumulation in dead reckoning localization, this paper introduces the last-move strategy for multiple heterogeneous robots. In the last-move strategy, a single robot is selected for maneuvering, and it turns on its bearing-range sensors for a short amount of time, in order to locate itself. While the selected robot moves, all other robots stop moving and perform as static landmarks for the moving robot. A robot may not maintain its desired course, in the case where environmental disturbance is severe. We thus develop a control strategy for avoiding obstacles while estimating the disturbance direction at a robot's location. To the best of our knowledge, this paper is novel in localization and control of a team of heterogeneous robots, considering the case where environmental disturbance is severe. The proposed localization process is energy-efficient, thus is suitable for practical applications. The performance of the proposed schemes is demonstrated utilizing MATLAB simulations.  相似文献   

6.
This paper investigates the active fault tolerant cooperative control problem for a team of wheeled mobile robots whose actuators are subjected to partial or severe faults during the team mission. The cooperative robots network only requires the interaction between local neighbors over the undirected graph and does not assume the existence of leaders in the network. We assume that the communication exists all the time during the mission. To avoid the system''s deterioration in the event of a fault, a set of extended Kalman filters (EKFs) are employed to monitor the actuators'' behavior for each robot. Then, based on the online information given by the EKFs, a reconfigurable sliding mode control is proposed to take an appropriate action to accommodate that fault. In this research study, two types of faults are considered. The first type is a partial actuator fault in which the faulty actuator responds to a partial of its control input, but still has the capability to continue the mission when the control law is reconfigured. In addition, the controllers of the remaining healthy robots are reconfigured simultaneously to move within the same capability of the faulty one. The second type is a severe actuator fault in which the faulty actuator is subjected to a large loss of its control input, and that lead the exclusion of that faulty robot from the team formation. Consequently, the remaining healthy robots update their reference trajectories and form a new formation shape to achieve the rest of the team mission.  相似文献   

7.
多机器人任意队形分布式控制研究   总被引:11,自引:3,他引:11  
韩学东  洪炳熔  孟伟 《机器人》2003,25(1):66-72
本文针对多智能体协作完成特定任务时难以在全自主控制的前提下协作形成任意队 形和队形向量不易确定的问题,通过由各智能体自主简单的确定自己的队形向量,从理论上 扩展基于队形向量的队形控制原理以生成任意队形,改进机器人的运动方式以提高收敛速度 ,提出一种快速收敛的机器人部队任意队形分布式控制算法.为了解决智能体机器人之间的 冲突问题,提出了一个通信协调模型.仿真实验和实际机器人实验均表明了算法的可行性和 有效性.  相似文献   

8.

This paper presents a distributed scalable multi-robot planning algorithm for informed sampling of quasistatic spatials fields. We address the problem of efficient data collection using multiple autonomous vehicles and consider the effects of communication between multiple robots, acting independently, on the overall sampling performance of the team. We focus on the distributed sampling problem where the robots operate independent of their teammates, but have the ability to communicate their current state to other neighbors within a fixed communication range. Our proposed approach is scalable and adaptive to various environmental scenarios, changing robot team configurations, and runs in real-time, which are important features for many real-world applications. We compare the performance of our proposed algorithm to baseline strategies through simulated experiments that utilize models derived from both synthetic and field deployment data. The results show that our sampling algorithm is efficient even when robots in the team are operating with a limited communication range, thus demonstrating the scalability of our method in sampling large-scale environments.

  相似文献   

9.
This paper investigates convex optimization strategies for coordinating a large-scale team of fully actuated mobile robots. Our primary motivation is both algorithm scalability as well as real-time performance. To accomplish this, we employ a formal definition from shape analysis for formation representation and repose the motion planning problem to one of changing (or maintaining) the shape of the formation. We then show that optimal solutions, minimizing either the total distance or minimax distance the nodes must travel, can be achieved through second-order cone programming techniques. We further prove a theoretical complexity for the shape problem of O(m1.5) as well as O(m) complexity in practice, where m denotes the number of robots in the shape configuration. Solutions for large-scale teams (1000's of robots) can be calculated in real time on a standard desktop PC. Extensions integrating both workspace and vehicle motion constraints are also presented with similar complexity bounds. We expect these results can be generalized for additional motion planning tasks, and will prove useful for improving the performance and extending the mission lives of large-scale robot formations as well as mobile ad hoc networks.  相似文献   

10.
Abstraction and control for Groups of robots   总被引:2,自引:0,他引:2  
This paper addresses the general problem of controlling a large number of robots required to move as a group. We propose an abstraction based on the definition of a map from the configuration space Q of the robots to a lower dimensional manifold A, whose dimension is independent of the number of robots. In this paper, we focus on planar fully actuated robots. We require that the manifold A has a product structure A=G/spl times/S, where G is a Lie group, which captures the position and orientation of the ensemble in the chosen world coordinate frame, and S is a shape manifold, which is an intrinsic characterization of the team describing the "shape" as the area spanned by the robots. We design decoupled controllers for the group and shape variables. We derive controllers for individual robots that guarantee the desired behavior on A. These controllers can be realized by feedback that depends only on the current state of the robot and the state of the manifold A. This has the practical advantage of reducing the communication and sensing that is required and limiting the complexity of individual robot controllers, even for large numbers of robots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号