首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
最小二乘隐空间支持向量机   总被引:9,自引:0,他引:9  
王玲  薄列峰  刘芳  焦李成 《计算机学报》2005,28(8):1302-1307
在隐空间中采用最小二乘损失函数,提出了最小二乘隐空间支持向量机(LSHSSVMs).同隐空间支持向量机(HSSVMs)一样,最小二乘隐空间支持向量机不需要核函数满足正定条件,从而扩展了支持向量机核函数的选择范围.由于采用了最小二乘损失函数,最小二乘隐空问支持向量机产生的优化问题为无约束凸二次规划,这比隐空间支持向量机产生的约束凸二次规划更易求解.仿真实验结果表明所提算法在计算时间和推广能力上较隐空间支持向量机存在一定的优势.  相似文献   

2.
基于支持向量机和最小二乘支持向量机的入侵检测比较   总被引:2,自引:0,他引:2  
将支持向量机和最小二乘支持向量机用于入侵检测之中,利用主元分析对数据进行约简,然后使用SVM和 LS-SVM对数据进行训练和测试.基于KDDCUP'99做了三组对比实验,对支持向量机和最小二乘支持向量机的性能做了统计.实验结果表明,SVM比LS-SVM分类能力强,但是LS-SVM耗时较少.  相似文献   

3.
郭辉  刘贺平 《信息与控制》2005,34(4):403-407
提出了用核的偏最小二乘进行特征提取.首先把初始输入映射到高维特征空间,然后在高维特征空间中计算得分向量,降低样本的维数,再用最小二乘支持向量机进行回归.通过实验表明,这种方法得到的效果优于没有特征提取的回归.同时与PLS提取特征相比,KPLS分析效果更好.  相似文献   

4.
提出了一个最小二乘双支持向量回归机,它是在双支持向量回归机基础之上建立的,打破了标准支持向量回归机利用两条平行超平面构造ε带的思想。事实上,它是利用两条不一定平行的超平面构造ε带,每条超平面确定一个半ε-带,从而得到最终的回归函数,这使该回归函数更符合数据本身的分布情况,回归算法有更好的推广能力。另外,最小二乘双支持向量机只需求解两个较小规模的线性方程组就能得到最后的回归函数,其计算复杂度相对较低。数值实验也表明该回归算法在推广能力和计算效率上有一定的优势。  相似文献   

5.
提出一类非线性系统基于最小二乘支持向量机的直接自适应控制方法.该方法采用最小二乘支持向量机构造自适应控制器,自适应控制器参数的在线调整规律由Lyapunov稳定性理论导出,并严格证明了闭环系统的渐近稳定性.仿真研究表明了此控制方案的可行性和有效性.  相似文献   

6.
最小二乘支持向量机算法研究   总被引:17,自引:0,他引:17  
1 引言支持向量机(SVM,Support Vector Machines)是基于结构风险最小化的统计学习方法,它具有完备的统计学习理论基础和出色的学习性能,在模式识别和函数估计中得到了有效的应用(Vapnik,1995,1998)。支持向量机方法一方面通过把数据映射到高维空间,解决原始空间中数据线性不可分问题;另一方面,通过构造最优分类超平面进行数据分类。神经网络通过基于梯度迭代的方法进行数据学习,容易陷入局部最小值,支持向量机是通过解决一个二次规划问题,来获得  相似文献   

7.
本文针对传统的增量学习算法无法处理后采集到的样本中含有新增特征的问题,设计适应样本特征维数增加的训练算法。在基于最小二乘支持向量机的基础上,提出了特征增量学习算法。该算法充分利用先前训练得到的分类器的结构参数,仅对新增特征采用最小二乘支持向量机进行学习。实验结果表明,该算法能够在保证分类精度的同时,有效效地提高训练速度并降低存储空间。  相似文献   

8.
基于最小二乘支持向量机的油罐故障诊断方法   总被引:1,自引:0,他引:1  
根据油罐故障分析,建立了油罐故障诊断模型。采用新型的支持向量机-最小二乘向量机(LS-SVM)的算法对此诊断模型进行预测,获得了满意的效果。该方法易于使用,很少受不确定性因素的影响,有很高的预测准确性。  相似文献   

9.
为提高导引头故障诊断准确率,提出了一种采用改进遗传算法优化的最小二乘支持向量机(LSSVM)构造导引头多故障分类模型的方法。该方法基于一对一策略及改进的投票法建立两层LSSVM多故障分类器,并利用一种自适应变步长搜索策略改进的遗传算法对LSSVM的核参数和正则化参数进行自动优选。通过对某型导引头实测数据的仿真并和标准SVM及BP神经网络诊断方法相比较,结果表明该方法具有更高诊断准确率和计算效率。  相似文献   

10.
楼安平  杨新 《计算机仿真》2005,22(12):166-168
该文认为在人脸识别中,偏最小二乘回归方法作为一种新的降维方法,在处理小样本问题时具有明显优势,而主元分析方法作为一种传统的降维方法在选择分量时没有考虑类信息,因而有可能忽略掉重要的分类信息。支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性。该文提出了一种基于偏最小二乘与支持向量机的人脸识别方法。利用偏最小二乘回归分析对人脸图像进行降维和特征提取,再利用支持向量机对特征向量进行分类识别。ORL人脸库的仿真结果证明偏最小二乘回归方法比主元分析方法更有效。  相似文献   

11.
在酵母生产过程中,乙醇浓度是一个很重要的控制参数,但目前的检测手段多为离线人工测量,不能实现乙醇浓度的测控自动化,是束缚生产效率的重要原因。本文采用最小二乘支持向量机(LS-SVM)方法进行回归估计,完成了对乙醇浓度的软测量。试验结果表明基于LS-SVM的软测量方法可以很好地实现乙醇浓度在线自动测量。  相似文献   

12.
一种广义最小二乘支持向量机算法及其应用   总被引:1,自引:1,他引:0  
吴宗亮  窦衡 《计算机应用》2009,29(3):877-879
最小二乘支持向量机(LS SVM)是处理不可分样本集情况下模式分类的有效工具,但是该算法在处理很多实际分类问题时,表现出了一定的局限性。为了进一步增强最小二乘支持向量机的推广能力,提出一种通用的广义最小二乘支持向量机算法,并且把这种新算法首先应用到雷达一维距离像的识别中,实验表明新的算法能取得更好的识别效果。  相似文献   

13.
离散数据拟合模型的研究与实现   总被引:1,自引:0,他引:1  
最小二乘支持向量机引入到离散数据拟合中,代替传统的最小二乘法解决离散数据拟合问题。推导了用于函数估计的最小二乘支持向量机算法,构建了基于最小二乘支持向量机的离散数据拟合模型,并对电机数据拟合进行了研究。结果表明,最小二乘支持向量机拟合离散数据比最小二乘法精度更高、拟合效果更好。  相似文献   

14.
针对最小二乘支持向量机的参数优选,提出用遗传算法优化其有关参数,以经济系统中的人口数据对它进行训练,并用于预测城市的人口。最后,把最小二乘支持向量机与传统的BP网络预测结果进行比较,结果证明,该模型的预测精确度是令人满意的,文中提出的方法是可行的。  相似文献   

15.
基于粒子群优化算法的LS-SVM财务预警   总被引:1,自引:0,他引:1  
提出一种基于粒子群优化算法优化有关参数的最小二乘支持向量机的财务预警模型。通过提出适当的验证性能指标,用粒子群优化算法优化最小二乘支持向量机的有关参数,利用上市公司的财务数据对该方法进行实证财务预警分析。仿真结果表明,该模型的精确度令人满意,该方法是可行且有效的。  相似文献   

16.
针对最小二乘支持向量机(LS-SVM)在时间序列预测中的参数不确定问题,在训练阶段,使用结合了全局搜索和局部搜索的免疫文化基因算法来进行参数寻优。实验中通过对Lorenz时间序列和建筑能耗的两组预测实验,对比了免疫文化基因算法、遗传算法和网格搜索算法对LS-SVM参数的优化效果,证明了免疫文化基因算法的优化效果最好,且LS-SVM的预测精度比支持向量机(SVM)和BP网络预测都要高。  相似文献   

17.
LS-SVM的参数优选及铁路客运市场预测   总被引:2,自引:0,他引:2  
提出通过建立验证性能指标用遗传算法优化最小二乘支持向量机的有关参数并进行时间序列预测。将最小二乘支持向量机以铁路客运市场数据进行训练和测试,并与传统的BP网络预测模型相比较,结果证明,该模型的预测精确度是令人满意的,提出的方法是可行的。  相似文献   

18.
一种快速最小二乘支持向量机分类算法   总被引:1,自引:1,他引:0  
最小二乘支持向量机不需要求解凸二次规划问题,通过求解一组线性方程而获得最优分类面,但是,最小二乘支持向量机失去了解的稀疏性,当训练样本数量较大时,算法的计算量非常大。提出了一种快速最小二乘支持向量机算法,在保证支持向量机推广能力的同时,算法的速度得到了提高,尤其是当训练样本数量较大时算法的速度优势更明显。新算法通过选择那些支持值较大样本作为训练样本,以减少训练样本数量,提高算法的速度;然后,利用最小二乘支持向量机算法获得近似最优解。实验结果显示,新算法的训练速度确实较快。  相似文献   

19.
基于PSO的LS-SVM特征选择与参数优化算法   总被引:1,自引:0,他引:1  
针对最小二乘支持向量机特征选择及参数优化问题,提出了一种基于PSO的LS-SVM特征选择与参数同步优化算法。首先产生若干种群(特征子集),然后用PSO算法对特征及参数进行优化。在UCI标准数据集上进行的仿真实验表明,该算法可有效地找出合适的特征子集及LS-SVM参数,且与基于遗传算法的最小二乘支持向量机算法(GALS-SVM)和传统的LS-SVM算法相比具有较好的分类效果。  相似文献   

20.
针对二乘向量机(LS-SVM)对所有样本误差惩罚相同、预测精度不高的问题,提出了一种基于AdaBoost模型的二乘向量回归机。该算法使用多个二乘向量机按照某种学习规则协调各二乘向量机的输出,同时根据回归精度,建立各二乘向量机中每一个样本的误差惩罚权重,以突出样本的惩罚差异性,提高算法的泛化性能。实验结果表明,提出的算法提高了二乘向量回归机的预测精度,优化了学习机的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号