首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The variations in the electrical properties of Cr Schottky contacts formed by electrodeposition technique on n-type Si substrate have been investigated as a function of temperature using current-voltage (I-V) and capacitance-voltage (C-V) measurements in the temperature range of 80-320 K by steps of 20 K. The basic diode parameters such as ideality factor (n) and barrier height (Φb) were consequently extracted from the electrical measurements. It has been seen that the ideality factor increased and the barrier height decreased with decreasing temperature, when the I-V characteristics were analyzed on the basis of the thermionic emission (TE) theory. The abnormal temperature dependence of the Φb and n and is explained by invoking two sets of Gaussian distribution of barrier heights at 320-200 K, and 180-80 K. The double Gaussian distribution analysis of the temperature-dependent I-V characteristics of the Cr/n-type Si Schottky contacts gave the mean barrier heights of 0.910 and 0.693 eV and standard deviations (σs) of 109 mV and 72 mV, respectively. Then, these values of the mean barrier height have been confirmed with the modified ln(I0/T2) − q2/2k2T2 versus 1/T plot which belongs the two temperature regions.  相似文献   

2.
We report the effects of the thermal annealing and dopant concentration on the optical properties of Se or S-doped hydrogenated amorphous silicon thin films. The Se and S-doped a-Si:H (a-Si,Se:H and a-Si,S:H) thin films were prepared by glow discharge plasma enhanced chemical vapor deposition (GD-PECVD) on 7059 corning glass. The films were subsequently annealed in vacuum in the temperature range from 100 to 500 °C. Influence of doping and annealing was examined by means of optical transmission spectroscopy of the films in the wavelength range of 300-1100 nm taken at room temperature. The absorption coefficients and refractive indices decreased as the annealing temperature increased from 100 to 300 °C and then increased again as the annealing temperature further increased to 500 °C, while the highest bandgap was observed at 300 °C for all of the samples. For a given dopant concentration bandgap was observed to be higher in a-Si,S:H than a-Si,Se:H thin films.  相似文献   

3.
In the present work, we have investigated the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Au/SiO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diode and compared with Au/n-GaN metal-semiconductor (MS) Schottky diode. Calculations showed that the Schottky barrier height and ideality factor of the MS Schottky diode is 0.79 eV (I-V), 0.87 eV (C-V) and 1.45, respectively. It is observed that the Schottky barrier height increases to 0.86 eV (I-V), 0.99 eV (C-V) and ideality factor deceases to 1.3 for MIS diode. For the MS diode, the calculated doping concentration is 4.17 × 1017 cm−3. However, in the case of the MIS Schottky diode, the decrease in doping concentration is observed and the respective value is 2.08 × 1017 cm−3. The obtained carrier concentration of the MIS diode is reduced about 50% when compared to the MS diode. The interface state density as determined by Terman's method is found to be 3.79 × 1012 and 3.41 × 1010 cm−2 eV−1 for the MS and MIS Schottky diodes, respectively. The calculated interface densities are 2.47 × 1011 cm−2 eV−1, 3.35 × 1011 cm−2 eV−1 and 3.5 × 1011 cm−2 eV−1 for the sweep rates of 300, 450 and 600 mV/s from MOS C-V measurements for the MIS Schottky diode. The interface state density calculated from Terman's method is found to be increased with sweep rate. From the C-V measurement, it is noted that the decrease in the carrier concentration in MIS diodes as compared to MS diode may be due to the presence of oxide interfacial layer. DLTS measurements have also been performed on MIS Schottky diode and discussed.  相似文献   

4.
β-Carotene–FSS organic semiconductor/n-type Si structure has been characterized by current–voltage and capacitance–voltage methods. A deviation in IV characteristic of the diode is observed due to effect of series resistance and interfacial layer. Cheung's functions were used to calculate diode parameters. The ideality factor, series resistance and barrier height values of the diode are n = 1.77, Rs = 10.32 (10.39) kΩ and 0.78 eV. The obtained ideality factor suggests that Au/β-carotene–FSS/n-Si Schottky diode has a metal–SiO2 oxide layer plus organic layer–semiconductor (MIOS) configuration. The capacitance–voltage characterizations of Au/β-carotene–FSS/n-Si diode at different temperatures were performed. The capacitance of the diode changes with temperature. The barrier height and ideality factor obtained from CV curves are 0.67 eV and 1.68. The interface density properties of the diode are analyzed and the shape of the density distribution of the interface states is in the range of Ec −0.49 to −0.62 eV. It is evaluated that the FSS organic layer controls electrical charge transport properties of Au/β-carotene/n-Si diode by excluding effects of the β-carotene and SiO2 residual oxides on the hybrid diode.  相似文献   

5.
The structural and optical properties of CdS films deposited by evaporation were investigated. X-ray diffraction study showed that CdS films were polycrystalline in nature with zinc-blende structure and a strong (1 1 1) texture. The study has been made on the behavior of Cu/n-CdS thin film junction on SnO2 coated glass substrate grown using thermal evaporation method. The forward bias current-voltage (I-V) characteristics of Cu/CdS/SnO2/In-Ga structures have been investigated in the temperature range of 130-325 K. The semi-logarithmic lnI-V characteristics based on the Thermionic emission (TE) mechanism showed a decrease in the ideality factor (n) and an increase in the zero-bias barrier height (ΦBo) with the increasing temperature. The values of n and ΦBo change from 8.98 and 0.29 eV (at 130 K) to 3.42 and 0.72 eV (at 325 K), respectively. The conventional Richardson plot of the ln(Io/T2) vs q/kT shows nonlinear behavior. The forward bias current I is found to be proportional to Io(T)exp(AV), where A is the slope of ln(I)-V plot and almost independent of the applied bias voltage and temperature, and Io(T) is relatively a weak function of temperature. These results indicate that the mechanism of charge transport in the SnO2/CdS/Cu structure in the whole temperature range is performed by tunneling among interface states/traps or dislocations intersecting the space-charge region. In addition, voltage dependent values of resistance (Ri) were obtained from forward and reverse bias I-V characteristics by using Ohm's law for each temperature level.  相似文献   

6.
7.
Al/P2ClAn/p-Si/Al structure was obtained by the evaporation of the polymer P2ClAn on the front surface of p-type silicon substrate. The P2ClAn emeraldine salt was chemically synthesized by using propionic (C2H5COOH) acid. The current–voltage (IV) characteristic of the structure was measured at room temperature. The capacitance–voltage–frequency (CVf) in terms of interface states over the frequency range of 10 kHz to 3 MHz has been investigated. The capacitance has decreased with increasing frequency, due to the interface states distribution. From the forward bias IV plot for the sample, the ideality factor (n) and zero-bias barrier height (Φbp,0) were obtained as 4.84 and 0.787 eV, respectively. Under forward bias, the high value of the ideality factor and the dispersion in capacitance could be due to the interface state distribution, the interfacial insulator layer, the conducting polymer on the interface and inhomogeneity of the barrier height. The energy distributions and the relaxation times of the interface states were determined in the energy range of (0.387 − Ev) to (0.787 − Ev) eV.  相似文献   

8.
The hydrogenated amorphous carbon films (a-C:H, so-called diamond-like carbon, DLC) have exceptional physical and mechanical properties and have wide applications. In the present study, amorphous hydrogenated carbon films (a-C:H) have been deposited on a Si (100) substrate at different hydrogen flow using electron cyclotron resonance chemical vapor deposition (ECR-CVD). The flow of hydrogen changed from 10 sccm to 40 sccm and the flow of acetylene was fixed at 10 sccm. The microstructure and properties of the a-C:H were measured using visible Raman spectra, Fourier transform infrared (FTIR) spectroscopy, UV-VIS spectrometer,surface profilometer and nano-indentation. The results showed that the sp3 content and sp3-CH2 structure in the amorphous hydrogenated carbon films increased with the hydrogen flow. The deposition rate decreased with the hydrogen flow. The residual stress and the nano-hardness of the amorphous hydrogenated carbon films increased with the hydrogen flow. Consequently, the a-C:H film become more diamond-like with the increase of hydrogen flow.  相似文献   

9.
Hydrogenated microcrystalline silicon thin films (μc-Si:H) were deposited by remote inductively coupled plasma assistant pulsed dc twin magnetron sputtering at temperatures below 300 °C. The formation of μc-Si:H was only found in the environment of hydrogen plasma, where Ar and H2 mixed gas was used. In pure argon plasma or without the assistance of ICP in the Ar/H2 gas mixtures, all the samples were amorphous structure. It suggested that ICP hydrogen plasma which enhanced the density and energy of H radicals played the key role in the formation of μc-Si:H films.  相似文献   

10.
Polycrystalline cadmium sulphide (CdS) thin films have been prepared by spraying a mixture of an equimolar aqueous solutions of cadmium chloride and thiourea on preheated fluorine doped tin oxide (FTO) coated glass substrates at different substrate temperatures. The cell configurations n-CdS/1 M (NaOH + Na2S + S)/C were used for studying the capacitance-voltage (C-V) characteristics in dark, current-voltage (I-V) characteristics in dark and under illumination, photovoltaic power output and spectral response characteristics of the as deposited thin films. Photoelectrochemical study shows that as deposited CdS thin films exhibits n-type of conductivity. The spectral response characteristics of the films at room temperature show a prominent sharp peak at 500 nm leading to optical bandgap energy of 2.48 eV. It is found that fill factor and efficiency are maximum for photoelectrode deposited at 300 °C. This is due to low resistance; high flat band potential, maximum open circuit voltage as well as maximum short-circuit current. The measured values of efficiency (η) and fill factor (FF) are found to be 0.17% and 0.38 respectively for film deposited at 300 °C.  相似文献   

11.
The anisotropy compensation and magnetostrictive properties of Tb1−xHox(Fe0.8Co0.2)2 (0.60 ≤ x ≤ 1.0) alloys have been investigated. The easy magnetization direction (EMD) at room temperature rotates from the 〈1 1 1〉 axis (x ≤ 0.75) to the 〈1 0 0〉 axis (x ≥ 0.90) through an intermediate state 〈1 1 0〉, subjected to the anisotropy compensation between Tb3+ and Ho3+ ions. Composition anisotropy compensation is realized near x = 0.75. The Tb0.25Ho0.75(Fe0.8Co0.2)2 alloy has a minimum anisotropy and a large spontaneous magnetostriction coefficient λ111 (≈740 ppm) at room temperature. The strong 〈1 1 1〉-oriented 1-3 epoxy-bonded composite has been fabricated by curing under a moderate magnetic field. A high low-field magnetostriction of about 400 ppm at 3 kOe is obtained for the 1-3 epoxy/Tb0.25Ho0.75(Fe0.8Co0.2)2 composite with 40-vol% alloy particles, which can be attributed to the low magnetic anisotropy, EMD lying along 〈1 1 1〉 direction, the strong 〈1 1 1〉-textured orientation and the chain structure.  相似文献   

12.
The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 ± 0.02 and 1.70 ± 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height Φb determined from the I-V measurements was 0.75 ± 0.01 eV at 300 K and decreases to 0.61 ± 0.01 eV at 200 K. The forward voltage-temperature (VF-T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (IF) in the range 20 nA-6 μA. The VF-T characteristics were linear for three activation currents in the diode. From the VF-T characteristics at 20 nA, 100 nA and 6 μA, the values of the temperature coefficients of the forward bias voltage (dVF/dT) for the diode were determined as −2.30 mV K−1, −2.60 mV K−1 and −3.26 mV K−1 with a standard error of 0.05 mV K−1, respectively.  相似文献   

13.
Nanostructured copper/hydrogenated amorphous carbon (a-C:H) multilayer grown in a low base vacuum (1 × 10−3 Torr) system combining plasma-enhanced chemical vapor deposition and sputtering techniques. These nanostructured multilayer were found to exhibit improved electrical, optical, surface and structural properties, compared to that of monolayer a-C:H films. The residual stresses of such multilayer structure were found well below 1 GPa. Scanning electron microscopy and atomic force microscopy results revealed a nanostructured surface morphology and low surface roughnesses values. X-ray photoelectron spectroscopy, secondary ion mass spectroscopy and energy dispersive X-ray analysis confirmed a very small amount of copper in these films. These structures exhibited very high optical transparency in the near infrared region (∼90%) and the optical band gap varied from 1.35 to 1.7 eV. It was noticed that the temperature dependent conductivity improved due to the presence of both copper and the nano-structured morphology.  相似文献   

14.
The single phase hexagonal YMnO3 has been synthesized via sol-gel route by adopting two different sintering conditions. In one case, sintering has been done at ∼700 °C in Ar/H2 atmosphere and in other case it has been done at ∼1250 °C in air. Magnetic measurements of the samples, synthesized by sintering at relatively lower temperature in Ar/H2 atmosphere, show the enhanced ferromagnetic behaviour at 10 K. M-H curve shows that the value of saturation magnetization (Ms) at 10 K is 8.04 emu/g for Ar/H2 sintered sample while it is 2.93 emu/g for the air sintered sample. Moreover, a weak ferromagnetic signal at room temperature has been observed in YMnO3 compound. Magnetization versus magnetic field (M-H) curves of hydrogen treated samples, measured at room temperature, show small kink in the linear variation near origin, possibly due to presence of weak ferromagnetic interactions in the samples at room temperature. However, the polarization-electric field (P-E) curve shows weak ferroelectric characteristics for the Ar/H2 sintered samples. It is suggested that the enhanced ferromagnetism in Ar/H2 sintered sample originates from the presence of oxygen vacancies in the Ar/H2 sintered samples. Moreover, the magnetoelectric coupling coefficient at room temperature is improved to 106 mV/cm Oe for Ar/H2 sintered sample as compared to 96 mV/cm Oe for air sintered sample at 40 kHz ac magnetic field frequency.  相似文献   

15.
The Zn1−xMnxO (x = 0.07) thin films were grown on glass substrates by direct current reactive magnetron cosputtering. The influence of oxygen partial pressure on the structural, electrical and optical properties of the films has been studied. X-ray-diffraction measurement revealed that all the films were single phase and had wurtzite structure with c-axis orientation. The experimental results indicated that there was an optimum oxygen partial pressure where the film shows relative stronger texture, better nano-crystallite and lower surface roughness. As the oxygen partial pressure increases, the carrier concentration systematically decreases and photoluminescence peaks related to zinc interstitials gradually diminish. The minimal resistivity of 70.48 Ω cm with the highest Hall mobility of 1.36 cm2 V−1 s−1 and the carrier density of 6.52 × 1016 cm−3 were obtained when oxygen partial pressure is 0.4. All films exhibit a transmittance higher than 80% in the visible region, while the deposited films showed a lower transmittance when oxygen partial pressure is 0.4. With the increasing of oxygen partial pressure, the peak of near-band-edge emission has firstly a blueshift and then redshift, which shows a similar trend to the band gap in the optical transmittance measurement.  相似文献   

16.
Amorphous silicon (a-Si) optical films were deposited on a silicon substrate by ICP-PECVD at the temperature of 300 °C, using argon (Ar) and silane (SiH4) as gas precursors, with the influences of precursors' flow rate, RF power and operating vacuum pressure on the optical properties and microstructure evolutions of a-Si films as the object of our investigation in this study. Optical characteristics of a-Si films indicated that optimum refractive index and extinction coefficient at 1550 nm wavelength can be achieved by using the process parameters of argon/silane flow rate of 400 sccm, RF power wattage of 40 W with an operating vacuum pressure of 60 Pa, respectively. Microstructure evolutions show that the few defects and silicon nano-crystallized structures existing in a-Si films might increase the extinction coefficient. We strongly suggest adopting the optimum process parameters and thermal annealing to fabricate a rib-type a-Si arrayed waveguide grating device with 8 channels and 1.6 nm channel spacing; and its coupling loss and propagation loss were about − 0.74 dB and − 0.14 dB/cm, respectively.  相似文献   

17.
A 1H NMR study was carried out using hydrogenated activated carbon powder (AC) prepared by mechanical milling in a H2 atmosphere. Chemical shifts in the hydrogenated milled AC were observed near 0 and 2 ppm. In addition, the peak near 0 ppm was separated into two peaks (α and β) by the deconvolution of the NMR spectra; −0.6 and 0.2 ppm. This indicates that hydrogenated milled AC has three hydrogen components with different molecular mobilities. Measurement of the spin-lattice relaxation time (T1) revealed that the hydrogen near 0 and 2 ppm consisted of two components (Components 1 and 2) and one component (Component 3), respectively. However, the activation energies (Ea) of each hydrogen component could not be estimated because the plots of inverse temperature (1/T) versus the logarithm of T1 (ln T1) were scattered. We assumed that the components near 0 ppm (Component 1 and/or 2) were thermally unstable because the intensity of the chemical shift near 0 ppm decreased as the measurement temperature increased, and this might have an effect on T1 measurements. The spin-spin relaxation time (T2) indicated high and low molecular mobility at each chemical shift and several temperatures.  相似文献   

18.
In this study, (AlCrTaTiZr)Nx multi-component coatings with quinary metallic elements were developed as protective hard coatings for tribological application. The mechanical properties, creep behaviors, deformation mechanisms and interface adhesion of the (AlCrTaTiZr)Nx coatings with different N contents were characterized. With increasing the N2-to-total (N2 + Ar) flow ratio, RN, during sputtering deposition, the (AlCrTaTiZr)Nx coatings transformed from an amorphous metallic phase to a nanocomposite and finally a crystalline nitride structure. The hardness of the coatings accordingly increased from 13 GPa to a high value of about 30 GPa, but the creep strain rate also increased from 1.3 × 10− 4 to 7.3 × 10− 4 1/s. The plastic deformation of the amorphous metallic coating deposited with RN = 0% proceeded through the formation and extension of shear bands, whereas dislocation activities dominated the deformation behavior of the crystalline nitride coatings deposited with RN = 10% and 30%. With increasing RN, the interface adhesion energy between the coatings and the substrates was also enhanced from 6.1 to 22.9 J/m2.  相似文献   

19.
Thin amorphous silicon (a-Si:H) and carbonated silicon (a-Si1 − xCx:H) layers were deposited on stainless steel substrates using plasma-enhanced chemical vapour deposition (PECVD) in a “low-power” regime. The carbon content of the carbonated silicon (a-Si1 − xCx:H) alloys was varied between 0.1 and 0.37 at.%. The performance of these interfaces as effective corrosion barriers in 3% sodium chloride aqueous solutions was evaluated. Potentiodynamic polarisation curves and electrochemical impedance spectroscopy (EIS) were used next to X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to investigate the protection efficiency of the different barriers. The a-Si:H coated showed better corrosion resistance as compared to the carbonated silicon alloys. No degradation was observed after 14 days immersion of the steel substrate coated with a-Si:H in 3% sodium chloride aqueous solution, making this coating an attractive candidate as corrosion barrier.  相似文献   

20.
In this study, the main electrical parameters, such as doping concentration (ND), barrier height (ΦCV), depletion layer width (WD), series resistance (Rs) and Fermi energy level (EF), of GaAs/AlxGa1−xAs single quantum well (SQW) laser diodes were investigated using the admittance spectroscopy (C-V and G/ω-V) method in the temperature range of 80-360 K. The reverse bias C−2 vs. V plots gives a straight line in a wide voltage region, especially in weak inversion region. The values of ΦCV at the absolute temperature (T = 0 K) and the temperature coefficient (α) of barrier height were found as 1.22 eV and −8.65 × 10−4 eV/K, respectively. This value of α is in a close agreement with α of GaAs band gap (−5.45 × 10−4 eV/K). Experimental results show that the capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the diode are affected by not only temperature but also Rs. The capacitance-voltage-temperature (C-V-T) and conductance-voltage-temperature (G/ω-V-T) characteristics confirmed that temperature and Rs of the diode have effects on the electronic parameters in SQW laser diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号