首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary single-phase Bi2−xSbxSe3 alloy thin films were synthesized onto Au(1 1 1) substrates from an aqueous solution containing Bi(NO3)3, SbCl3, and SeO2 at room temperature for the first time via the electrodeposition technique. The electrodeposition of the thin films was studied using cyclic voltammetry, compositional, structural, optical measurements and surface morphology. It was found that the thin films with different stoichiometry can be obtained by controlling the electrolyte composition. The as-deposited films were crystallized in the preferential orientation along the (0 1 5) plane. The SEM investigations show that the film growth proceeds via nucleation, growth of film layer and formation of spherical particles on the film layer. The particle size and shape of Bi2−xSbxSe3 films could be changed by tuning the electrolyte composition. The optical absorption spectra suggest that the band gap of this alloy varied from 0.24 to 0.38 eV with increasing Sb content from x = 0 to x = 0.2.  相似文献   

2.
Stoichiometric compound of copper indium sulfur (CuIn5S8) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 Å. Thin films of CuIn5S8 were deposited onto glass substrates under the pressure of 10−6 Torr using thermal evaporation technique. CuIn5S8 thin films were then thermally annealed in air from 100 to 300 °C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn5S8 thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 °C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 104 cm−1 was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 300 °C.  相似文献   

3.
Ferroelectric PMN-PT thin films with a thickness of 600 nm were epitaxially grown on buffered Si (0 0 1) substrates at a substrate temperature that ranged from 550 to 700 °C using pulsed laser deposition (PLD). LaNiO3 (LNO) electrode thin films with a resistivity of ∼1900 μΩ cm were epitaxially grown on CeO2/YSZ buffered Si (0 0 1) substrates. The PMN-PT thin films grown at 600 °C on LNO/CeO2/YSZ/Si substrates had a pure perovskite and epitaxial structure. The PMN-PT films exhibited a high dielectric constant of about 1818 and a low dissipation factor of 0.04 at a frequency of 10 kHz. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization of 11.1 μC/cm2 and a coercive field of 43 kV/cm, were obtained in the epitaxial PMN-PT films.  相似文献   

4.
Thin films of lithium cobalt oxide were deposited on Pt or Pt/Ti/quartz glass substrates by radio frequency (RF) magnetron sputtering at the substrate temperatures from room temperature to 500 °C. As the substrate temperature increased, the film structure changed from amorphous structure to crystallinity with a strong (003) texture as characterized by X-ray diffraction. The surface morphology and cross-section were observed using scanning electron microscopy. It was found that the films tended to crack at a high substrate temperature. Charge-discharge tests of these films were conducted and compared. The different electrochemical characteristics of these films were attributed to the modified crystallography, morphology, and thermal stress. The LiCoO2 film deposited at 400 °C showed a well-defined 4.0 V voltage plateau on charge and a 3.9 V plateau on discharge, and delivered 54.5 μAh/cm2 μm at the first discharge capacity, with good cycling performance, giving evidence that such films could be used as the thin film cathodes for lithium microbatteries.  相似文献   

5.
The structural and optical properties of CdS films deposited by evaporation were investigated. X-ray diffraction study showed that CdS films were polycrystalline in nature with zinc-blende structure and a strong (1 1 1) texture. The study has been made on the behavior of Cu/n-CdS thin film junction on SnO2 coated glass substrate grown using thermal evaporation method. The forward bias current-voltage (I-V) characteristics of Cu/CdS/SnO2/In-Ga structures have been investigated in the temperature range of 130-325 K. The semi-logarithmic lnI-V characteristics based on the Thermionic emission (TE) mechanism showed a decrease in the ideality factor (n) and an increase in the zero-bias barrier height (ΦBo) with the increasing temperature. The values of n and ΦBo change from 8.98 and 0.29 eV (at 130 K) to 3.42 and 0.72 eV (at 325 K), respectively. The conventional Richardson plot of the ln(Io/T2) vs q/kT shows nonlinear behavior. The forward bias current I is found to be proportional to Io(T)exp(AV), where A is the slope of ln(I)-V plot and almost independent of the applied bias voltage and temperature, and Io(T) is relatively a weak function of temperature. These results indicate that the mechanism of charge transport in the SnO2/CdS/Cu structure in the whole temperature range is performed by tunneling among interface states/traps or dislocations intersecting the space-charge region. In addition, voltage dependent values of resistance (Ri) were obtained from forward and reverse bias I-V characteristics by using Ohm's law for each temperature level.  相似文献   

6.
Lanthanum doped Bi3TiNbO9 thin films (LBTN-x, La3+ contents x = 5%, 15%, 25% and 35 mol.%) with layered perovskite structure were fabricated on fused silica by pulsed laser deposition method. Their linear and nonlinear optical properties were studied by transmittance measurement and Z-Scan method. All films exhibit good transmittance (>55%) in visible region. For lanthanum doping content are x = 5%, 15% and 25 mol.%, the nonlinear absorption coefficient of LBTN-x thin films increases with the La3+ content, then it drops down at x = 35 mol.% when the content of La3+ in (Bi2O2)2+ layers is high enough to aggravate the orthorhombic distortion of the octahedra. We found that, 25 mol.% is the optimal La3+ content for LBTN-x thin films to have the largest nonlinear absorption coefficient making the LBTN-x film a promising candidate for absorbing-type optical device applications.  相似文献   

7.
Highly transparent, p-type conducting SnO2:Zn thin films are prepared from the thermal diffusion of a sandwich structure of Zn/SnO2/Zn multilayer thin films deposited on quartz glass substrate by direct current (DC) and radio frequency (RF) magnetron sputtering using Zn and SnO2 targets. The deposited films were annealed at various temperatures for thermal diffusion. The effect of annealing temperature and time on the structural, electrical and optical performances of SnO2:Zn films was studied. XRD results show that all p-type conducting films possessed polycrystalline SnO2 with tetragonal rutile structure. Hall effect results indicate that the treatment at 400 °C for 6 h was the optimum annealing parameters for p-type SnO2:Zn films which have relatively high hole concentration and low resistivity of 2.389 × 1017 cm− 3 and 7.436 Ω cm, respectively. The average transmission of the p-type SnO2:Zn films was above 80% in the visible light range.  相似文献   

8.
Wide-area and thick titanium nitride (TiNx) films were prepared on Al2O3 substrate by laser chemical vapor deposition (LCVD) using tetrakis (diethylamido) titanium (TDEAT) and ammonia (NH3) as source materials. Effects of laser power (PL) and pre-heating temperature (Tpre) on the composition, microstructure and deposition rate of TiNx films were investigated. (111) and (200) oriented TiNx films in a single phase were obtained. The lattice parameter and N to Ti ratio of the TiNx films slightly increased with increasing PL and was close to stoichiometric at PL > 150 W. TiNx films had a cauliflower-like surface and columnar cross section. The deposition rate of TiNx films increased from 42 to 90 µm/h at a depositing area of 10 mm by 10 mm substrate, decreasing with increasing PL and Tpre. The highest volume deposition rate of TiNx films was about 102 to 105 times greater than those of previous LCVD using Nd:YAG laser, argon ion laser and excimer laser.  相似文献   

9.
Y2O3 thin films were prepared by rf-sputtering under various sputtering pressures at room temperature. Spectroscopic ellipsometer, X-ray diffraction and semiconductor parameter analyzer were used to characterize the studied films. The results show the crystallinity and leakage current density of the films improved with decreasing sputtering pressure. The effects of post-metallization annealing (PMA) on optical, structural and electrical properties of the films were also evaluated. It is found that PMA can significantly enhance the electrical performance of Y2O3 film, and the lowest leakage current is found to be 1.54 × 10−8 A/cm2 at 1 MV/cm for the samples treated at 350 °C for 30 min. The leakage current mechanisms were discussed as well, which reveals that space charge limited current dominates the as-deposited films while Schottky mechanism describes the PMA treated ones well.  相似文献   

10.
CuCr1−xMgxO2 (x = 0, 0.03, 0.05, 0.07) thin films were prepared on sapphire substrates by sol-gel processing. The effect of Mg concentrations on the structural, morphological, electrical and optical properties was investigated. Highly transparent ≧70% Mg-doped CuCrO2 thin films with p-type conduction and semiconductor behavior were obtained. The microstructure of the systems was characterized by scanning electron microscopy and the roughness increased as the content of Mg increased. The photoluminescence spectra results indicated that it had a green luminescent emission peak at the 530 nm. In this paper, CuCr0.95Mg0.05O2 film has the lowest resistivity of 7.34 Ω cm with direct band gap of 3.11 eV. In order to investigate the conduction mechanism, the energy band of the CuCrO2 films is constructed based on the grain-boundary scattering.  相似文献   

11.
The microstructure and electrical properties of BaYxBi1−xO3 thick film negative temperature coefficient thermistors, fabricated by screen printing, were investigated. The sintered thick films were the single-phase solid solutions of the BaYxBi1−xO3 compounds with a monoclinic structure. The added Y2O3 led to a significant decrease in the grain size of the thermistors. The resistivity and coefficient of temperature sensitivity for the BaYxBi1−xO3 (0 ≤ x ≤ 0.15) thick film NTC thermistors decreased first with increasing x in the range of x < 0.04 and then increased with further increase in x.  相似文献   

12.
Thick polycrystalline gadolinium oxide (Gd2O3) films up to 11 μm in thickness were deposited via reactive electron beam-physical vapor deposition (EB-PVD) on silicon (111) substrates for use in neutron radiation detection. The effects of coating thickness, substrate temperature, and oxygen flow on film structural, electrical and optical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), capacitance–voltage (C–V) measurements, and ultraviolet–visible (UV–Vis) spectroscopy. Films were characterized as either monoclinic or mixed monoclinic and cubic phase depending on deposition parameters. Increasing the deposition temperature resulted in increased film crystallinity and cubic phase volume while decreasing the O2 flow rate resulted in increased volume of the monoclinic phase. Evidence of a thickness dependent crystallography is also presented. Electrical property measurements showed thin film dielectric constant could be tailored between 12 and 20 at 1 MHz frequency by decreasing the oxygen flow rate at deposition temperatures of 250 °C which is attributed to an increased presence of the monoclinic phase and increased film density. Band gap values were calculated from transmission measurements and ranged between 5.44 and 5.96 eV.  相似文献   

13.
In this paper, the chosen composition of PZT film falls in rhombohedral phase region and the dependence of lattice distortion on film thickness in sol-gel derived Pb(Zr0.58Ti0.42)O3 thin films was systematically investigated. The results confirm that the Pb(Zr0.58Ti0.42)O3 films have monoclinic phase even though the composition falls in the rhombohedral phase region. The mixed textures of (1 0 0) and (1 1 1) occur in the PZT films. In the case of mixed textures, a method using ψ-scan XRD to characterize the phase type of Pb(Zr0.58Ti0.42)O3 film is presented. It is found that the phase type of (1 0 0)-oriented grains is MA phase, and that of (1 1 1)-oriented grains is MB phase. Moreover, the lattice constants of both MA and MB phases are sensitive to the film thickness. The lattice distortion of monoclinic phase becomes smaller as film thickness increases.  相似文献   

14.
TiO2 thin films have been deposited at different Ar:O2 gas ratios (20:80,70:30,50:50,and 40:60 in sccm) by rf reactive magnetron sputtering at a constant power of 200 W. The formation of TiO2 was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen percentage in the films was found to increase with an increase in oxygen partial pressure during deposition. The oxygen content in the film was estimated from XPS measurement. Band gap of the films was calculated from the UV-Visible transmittance spectra. Increase in oxygen content in the films showed substantial increase in optical band gap from 2.8 eV to 3.78 eV. The Ar:O2 gas ratio was found to affect the particle size of the films determined by a transmission electron microscope (TEM). The particle size was found to be varying between 10 and 25 nm. The bactericidal efficiency of the deposited films was investigated using Escherichia coli (E. coli) cells under 1 h UV irradiation. The growth of E. coli cells was estimated through the Optical Density measurement by UV-Visible absorbance spectra. The qualitative analysis of the bactericidal efficiency of the deposited films after UV irradiation was observed through SEM. A correlation between the optical band gap, particle size and bactericidal efficiency of the TiO2 films at different argon:oxygen gas ratio has been studied.  相似文献   

15.
An approach is used to improve the remanent polarization of BiFeO3 thin films, where the BiFe0.96Zn0.04O3 thin film with (1 1 1) orientation was grown on the SrRuO3/SrTiO3(1 1 1) substrate by rf sputtering. A higher dielectric constant and a lower dielectric loss are demonstrated for the BiFe0.96Zn0.04O3 thin film as compared with those of pure BiFeO3 thin film. The introduction of Zn deteriorates the magnetic properties of BFO thin films. A giant polarization value of 2Pr ∼ 268.5 μC/cm2 is induced for the BiFe0.96Zn0.04O3 thin film as confirmed by PUND, owing to the (1 1 1) orientation, the introduction of Zn, and a low leakage current density.  相似文献   

16.
CuIn1−xAlxS2 thin films (x = 0, 0.09, 0.27, 0.46, 0.64, 0.82 and 1) with thicknesses of approximately 1 μm were formed by the sulfurization of DC sputtered Cu-In-Al precursors. All samples were sulfurized in a graphite container for 90 min at 650 °C in a 150 kPa Ar + S atmosphere. Final films were studied via X-ray diffraction (XRD), scanning electron microscopy (SEM) and micro-Raman spectroscopy. It was found that all samples were polycrystalline in nature and their lattice parameters varied slightly nonlinearly from {a = 5.49 Å, c = 11.02 Å} for CuInS2 to {a = 5.30 Å, c = 10.36 Å} for CuAlS2. No unwanted phases such as Cu2−xS or others were observed. Raman were recorded at a room temperature and the most intensive and dominant A1 phonon frequency varied nonlinearly from 294 cm−1 (CuInS2) to 314 cm−1 (CuAlS2).  相似文献   

17.
Designing supraceramic assemblies based on Al2O3 has remained a challenge due to the problems associated with the suitable dispersion in neat compounds and ability to control the preferred orientation in a unique fashion. Herein, granular HCP-(CoCrPt)100−X(Al2O3)X (X represents the percent weight) thin films with Si(1 0 0) substrates have been fabricated using sputtering technique followed by annealing treatment. Structural and magnetic properties of thin film have been investigated for potential application in magnetic recording media. It was shown that coercivity increased from 0.5 to 2.5 kOe by increasing the nano-grain Al2O3 content in the CoCrPt magnetic layers. In CoCrPt-Al2O3 thin films coercivity of 2.5 kOe has been obtained with increasing the Al2O3 content from 3 to 13 wt.% in the annealed thin films. The structural properties of the samples were studied using X-ray diffraction (XRD) and transmission electron microscope (TEM) equipped with selected area electron diffraction (SAED). The magnetic properties of the samples were measured with a vibrating sample magnetometer (VSM). The VSM results showed that the HCP-CoCrPt-Al2O3 granular films are a promising candidate for ultra-high-density recording media because of its low Al2O3 content and simple manufacturing process.  相似文献   

18.
Cd1−xZnxS (0 ≤ x ≤ 1) thin films have been deposited by chemical bath deposition method on glass substrates from aqueous solution containing cadmium acetate, zinc acetate and thiourea at 80 ± 5 °C and after annealed at 350 °C. The structural, morphological, compositional and optical properties of the deposited Cd1−xZnxS thin films have been studied by X-ray diffractometer, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), photoluminescence (PL) and UV-vis spectrophotometer, respectively. X-ray diffraction analysis shows that for x < 0.8, the crystal structure of Cd1−xZnxS thin films was hexagonal structure. For x > 0.6, however, the Cd1−xZnxS films were grown with cubic structure. Annealing the samples at 350 °C in air for 45 min resulted in increase in intensity as well as a shift towards lower scattering angles. The parameters such as crystallite size, strain, dislocation density and texture coefficient are calculated from X-ray diffraction studies. SEM studies reveal the formation of Cd1−xZnxS films with uniformly distributed grains over the entire surface of the substrate. The EDX analysis shows the content of atomic percentage. Optical method was used to determine the band gap of the films. The photoluminescence spectra of films have been studied and the results are discussed.  相似文献   

19.
Bi2Zn2/3Nb4/3O7 thin films were deposited on Pt/TiO2/SiO2/Si(1 0 0) substrates at a room temperature under the oxygen pressure of 1-10 Pa by pulsed laser deposition. Bi2Zn2/3Nb4/3O7 thin films were then post-annealed below 200 °C in a rapid thermal process furnace in air for 20 min. The dielectric and leakage current properties of Bi2Zn2/3Nb4/3O7 thin films are strongly influenced by the oxygen pressure during deposition and the post-annealing temperature. Bi2Zn2/3Nb4/3O7 thin films deposited under 1 Pa oxygen pressure and then post-annealed at a temperature of 150 °C show uniform surface morphologies. Dielectric constant and loss tangent are 57 and 0.005 at 10 kHz, respectively. The high resolution TEM image and the electron diffraction pattern show that nano crystallites exist in the amorphous thin film, which may be the origin of high dielectric constant in the Bi2Zn2/3Nb4/3O7 thin films deposited at low temperatures. Moreover, Bi2Zn2/3Nb4/3O7 thin film exhibits the excellent leakage current characteristics with a high breakdown strength and the leakage current density is approximately 1 × 10−7 A/cm2 at an applied bias field of 300 kV/cm. Bi2Zn2/3Nb4/3O7 thin films are potential materials for embedded capacitor applications.  相似文献   

20.
Nanocrystalline ZrNxOy thin films were deposited on p-type Si (100) substrates using hollow cathode discharge ion-plating (HCD-IP) and the films were annealed at 700 and 900 °C in the controlled atmosphere. The purpose of this study was to investigate the phase separation, phase transformation and the accompanying change of properties of the heat-treated ZrNxOy films deposited by ion plating. With the increase of oxygen flow rate ranging from 0 to 10 sccm, the primary phase of the as-deposited films evolved from ZrN to nearly amorphous structure and further to monoclinic ZrO2 (m-ZrO2). After heat treatment at 700 and 900 °C, phase transformation occurred in the samples deposited at 8 and 10 sccm O2, where a stoichiometric crystalline Zr2ON2 was found to derive from m-ZrO2 with dissolving nitrogen (m-ZrO2(N)). The hardness of the ZrNxOy thin films could be correlated to the fraction of Zr2ON2 + m-ZrO2. The film hardness decreased significantly as the fraction of ZrO+ Zr2ON2 exceeded ~ 60%, which was due to phase transition by increasing oxygen flow rate or phase transformation induced by heat treatment. The phase separation of m-ZrO2 from ZrN with dissolving oxygen (ZrN(O)) may relieve the residual stress of the ZrNxOy specimens deposited at 5 and 8 sccm O2, while direct formation of m-ZrO2 increased the stress of the film deposited at 10 sccm O2. On the other hand, the phase transformation from m-ZrO2(N) to Zr2ON2 by heat treatment at both 700 and 900 °C may effectively relieve the residual stress of the ZrNxOy films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号