首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
采用粉末烧结法,制备了一系列掺杂Li的AB5型稀土贮氢合金,并研究了Li掺杂量对贮氢合金MlNi3.55Mn0.40Al0.30Co0.70Lix相结构和电化学性能影响.结果表明:随Li掺杂量的增加,合金的晶胞参数c、c/a和晶胞体积V也随之增大;适量Li(x≤0.20)掺杂对合金的电化学容量有所提高,MlNi3.55 Mn0.40 Al0.30 Co0.70 Li0.20合金的0.2C放电容量达到273.53 mA·h/g;掺杂Li能改善合金的高倍率放电性能,当Li的含量为0.20~0.30时,合金的高倍率放电性能最好;掺杂Li能不同程度地提高贮氢合金的充放电循环稳定性,当x=0.20时,其循环性能最好,MlNi3.55Mn0.40Al0.30Co0.70Li0.20合金200次循环的电容与最大电容的比率(S200)达86.2%,但当Li掺杂量大于0.50时,合金的循环性能反而下降.  相似文献   

2.
Polycrystalline samples of La<0.4>Ca<,0.6>Mn<,1-x>Cr<,x>O<,3> (x = 0.00, 0.02, 0.04, 0.06) were prepared by the solid state reaction method. The influence of Cr<'3+> substitution for Mn<'3+> on the magnetic property and charge ordering phase of La<0.4>Ca<,0.6>MnO<,3> was studied through the measurements of X-ray diffraction (XRD), magnetization-temperature (M-T) curves and electron spin resonance (ESR) spectra. The experimental results indicate that the mother's body of La<,0.4>Ca<,0.6>MnO<,3> has very complicated magnetic structure, exhibits charge ordering phase at 258 K, and shows long-range strongly correlated charge ordering-antiferromagnetism (CO-AFM) phase from 175 to 50 K.Spin glass state appears when the tempereature decreases to about 41 K. When the Cr substitution amount is x = 0.06, the charge ordering phase of the mother's body is de- stroyed, because the Cr<'3+> substitution for Mn<'3+> destroys the spin order of CE-type antiferromagnetism, and thus leads to the melting of charge ordering. It is verified experimentally that the strong coupling between charge order and spin order exists in the charge order system of CE-type antiferromagnetism  相似文献   

3.
La0.75Sr0.25Cr y Mn1−y O3 (LSCM) (y = 0.0–0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperature-programmed reduction, electrical conductivity, I–V polarization, and impedance spectroscopy were conducted to investigate the Cr doping effect of La0.75Sr0.25MnO3 on its phase stability and electrochemical performance as a solid-oxide fuel cell (SOFC) anode. The chemical and structural stabilities of the oxides increased steadily with increasing Cr doping concentration, while the electrical conductivity decreased on the contrary. At y ≥ 0.4, the basic perovskite structure under the anode operating condition was sustained. a cell with 0.5-mm-thick scandia-stabilized zirconia electrolyte and La0.75Sr0.25Cr y Mn1−y O3 anode delivered a power density of ∼15 mW·cm−2 at 850°C.  相似文献   

4.
La0.75Sr0.25CryMn1-yO3(LSCM) (y=0.0-0.6) composite oxides were synthesized by a complexing process of combining ethylene diamine tetraacetic acid (EDTA) and citrate. X-ray diffraction (XRD), temperamre-programmed reduction, electrical conductivity, I-V polarization, and impedance spectroscopy were conducted to investigate the Cr doping effect of La0.75Sr0.25MnO3 on its phase stability and electrochemical performance as a solid-oxide fuel cell (SOFC) anode. The chemical and structural stabilities of the oxides increased steadily with increasing Cr doping concentration, while the electrical conductivity decreased on the contrary. At y ≥ 0.4, the basic perovskite structure under the an-ode operating condition was sustained. A cell with 0.5-mm-thick scandia-stabilized zirconia electrolyte and La0.75Sr0.25CryMn1-yO3 anode de-livered a power density of~15 mW.cm-2 at 850℃.  相似文献   

5.
TiO2 modified with Nd2O3 (Nd-TiO2) nanoparticles were prepared by a co-precipitation method and utilized as the photocatalysts for the degradation of Rhodamine B (RhB). The influence of Nd2O3 on the bulk and surface phase, surface area, particle size, and optical response of TiO2 was investigated by X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), BET, and UV-visible diffuse reflectance spectra. It is found that the crystalline phase and phase composition in the bulk and surface region of Nd-TiO2 calcined at high temperatures can be tuned by changing the amount of Nd2O3. Based on the results from XPS, EDX, XRD, and UV Raman spectra, it is assumed that Nd3+ ions do not enter the TiO2 lattice, but highly disperse onto the Nd-TiO2 particle surface in the form of Nd2O3 crystallites. These crystallites inhibit the agglomeration, growth in crystal size, and anatase-to-rutile phase transformation of TiO2. In the photocatalytic degradation of RhB reaction, Nd-TiO2 nanoparticles with higher surface area and wider optical response are more reactive in case of the same surface anatase phase. When the mixed phases of anatase and rutile exist in the surface region of Nd-TiO2, the synergetic effect over surface area and optical response is the important parameter which determines optimal photocatalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号