首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline perovskite lead free material (Na0.5Bi0.5)0.91Ba0.090TiO3 was prepared by solid state reaction method. The crystal structure examined by X-ray powder diffraction indicates that the material was single phase with tetragonal structure. Dielectric studies exhibit a diffuse phase transition and characterized by a strong temperature and frequency dispersion of permittivity which relates cation disorder at A-site and exhibits relaxor behaviour. The dielectric relaxation has been modeled using the Vogel-Fulcher relationship, the calculated activation energy found to be Ea = 0.021 eV. Complex impedance analysis indicates the system undergoing a polydispersive non-Debye type relaxation. Also, used to characterize grain and grain-boundary resistivities of Ba substituted (Na0.5Bi0.5)TiO3 ceramic. The phenomenon was also interpreted by accounting for microstructural differences. The corresponding relaxation times were also used to confirm the interpretation of complex impedance spectra. Overlapping of grain boundary and electrode relaxation processes can be separated above about 4000 C. Electrical modulus spectroscopy studies have been performed. The conductivity parameters such as ion-hopping rate (ωp) and the charge carrier concentration (K1) have been calculated using Almond and West formalism.  相似文献   

2.
CaCu2.9Fe0.1Ti4O12 (CCFTO) has been prepared by a novel semi-wet route and its dielectric properties have been studied in the temperature range 300-500 K. It is found that dielectric constant (?) decreases drastically in the frequency range 100 Hz to 1 MHz. Complex plane impedance and modulus analysis was done to understand this drastic decrease in ?. Oxidation state of various ions was studied using X-ray photoelectron spectroscopy (XPS). The decrease in the permittivity of CCFTO can be attributed to two factors: the suppression of the Ca/Cu disorder in CCFTO which is observed in CaCu3Ti4O12 (CCTO) and the absence of the grain boundary internal barrier layer capacitance mechanism.  相似文献   

3.
In the present work, an evaluation of the structural and electrical properties of a compound (LiZnVO4) has been undertaken. This compound was prepared by solution-based chemical route. The electrical properties were measured using a.c. impedance spectroscopy method in the frequency range of 103-106 Hz at various temperatures from 28 to 300 °C. X-ray diffraction study indicates a rhombohedral unit cell structure with lattice parameters a = 14.1934 Å, b = 14.1934 Å, c = 9.4926 Å, V = 1656.12 (Å)3, α = 90°, β = 90° and γ = 120°. A field emission scanning electron micrograph reveals a polycrystalline texture of the compound with grains of unequal sizes ∼0.2-2.0 μm. The electrical conduction in the material is a thermally activated process due to the bulk effect. Frequency dependence of a.c. conductivity obeys Jonscher's universal law (σac = σdc + n).  相似文献   

4.
In this work, we report on the Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(Zr0.52Ti0.48)O3 (PMN-PZN-PZT) ceramics with Ba(W0.5Cu0.5)O3 as the sintering aid that was manufactured in order to develop the low-temperature sintering materials for piezoelectric device applications. The phase transition, microstructure, dielectric, piezoelectric properties, and the temperature stability of the ceramics were investigated. The results showed that the addition of Ba(W0.5Cu0.5)O3 significantly improved the sintering temperature of PMN-PZN-PZT ceramics and could lower the sintering temperature from 1005 to 920 °C. Besides, the obtained Ba(W0.5Cu0.5)O3-doped ceramics sintered at 920 °C have optimized electrical properties, which are listed as follows: (Kp = 0.63, Qm = 1415 and d33 = 351 pC/N), and high depolarization temperature above 320 °C. These results indicated that this material was a promising candidate for high-power multilayer piezoelectric device applications.  相似文献   

5.
V2O3 and VN nanocrystals have been synthesized by the decomposition of the precursor NH4VO3 and following nitridation in an autoclave with metallic Na flux at 450–600 °C. X-ray powder diffraction (XRD) recorded the evolution process of the reaction from precursor NH4VO3 to hexagonal V2O3 and then to NaCl-type VN. In addition, the products were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).  相似文献   

6.
The compound [Li(Ni7/10Fe3/10)VO4] was produced by a solution-based chemical route whose electrical properties were investigated using complex impedance spectroscopy technique. X-ray diffraction study reveals an orthorhombic unit cell structure of the compound. Complex electrical impedance analysis exhibits: (i) grain interior, grain boundary and electrode-material interface contributions to electrical response and (ii) the presence of temperature dependent electrical relaxation phenomena in the material. Electrical conductivity study indicates that electrical conduction in the material is a thermally activated process.  相似文献   

7.
The Ca1−xSrxCu3Ti4O12 (CSCTO) giant dielectric ceramics were prepared by conventional solid-state method. X-ray diffraction patterns revealed that a small amount of Sr2+ (x < 0.2) had no obvious effect on the phase structure of the CSCTO ceramics, while with increasing the Sr2+ content, a second phase of SrTiO3 appeared. Electrical properties of CSCTO ceramics greatly depended on the Sr2+ content. The Ca0.9Sr0.1Cu3Ti4O12 ceramics exhibited a higher permittivity (71,153) and lower dielectric loss (0.022) when measured at 1 kHz at room temperature. The ceramics also performed good temperature stability in the temperature range from −50 °C to 100 °C at 1 kHz. By impedance spectroscopy analysis, all compounds were found to be electrically heterogeneous, showing semiconducting grains and insulating grain boundaries. The grain resistance was 1.28 Ω and the grain boundary resistance was 1.31 × 105 Ω. All the results indicated that the Ca0.9Sr0.1Cu3Ti4O12 ceramics were very promising materials with higher permittivity for practical applications.  相似文献   

8.
The citrate method was used to synthesize Sr(Ce1−xZrx)0.95Yb0.05O3−δ (x = 0.1, 0.2, 0.3, 0.4) and to avoid the drawbacks of the conventional solid state reaction method. The products were characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe X-ray microanalyzer (EPMA). The results indicate that the citrate method is an advantageous route in producing Sr(Ce1−xZrx)0.95Yb0.05O3−δ materials. Sr(Ce0.9Zr0.1)0.95Yb0.05O3−δ powders are composed of nanoscaled crystallites with the average grain size in the range of 60–70 nm. Single phase is confirmed over the whole x range. In addition, chemical stability against CO2 and electrical conduction behavior of the sintered Sr(Ce1−xZrx)0.95Yb0.05O3−δ ceramics were investigated. The chemical stability of the ceramics against CO2 is certified to increase with the increase in zirconium content. Impedance spectroscopy was used to study the electrical conduction behavior of Sr(Ce0.9Zr0.1)0.95Yb0.05O3−δ ceramic.  相似文献   

9.
Ceramic samples of xBi(Al0.5Fe0.5)O3-(1 − x)PbTiO3 (BAF-PT, x = 0.05-0.5) solid solutions were fabricated using the conventional solid state reaction method. X-ray diffraction analysis revealed that all compositions can form single perovskite phase with tetragonal symmetry. The relationship between the tetragonal lattice parameters, tetragonality c/a, cell volume, and ferro-piezoelectric characterization as a function of x was systematically investigated. The BAF modification can effectively improve the poling condition at a proper BAF content. A combination of piezoelectric constant of d33 (50-60 pC/N), electromechanical planar coupling coefficients of kp (20.3-22.5%), and high Curie temperature Tc (>478 °C) suggested that BAF-PT could be a good candidate for high-temperature piezoelectric applications.  相似文献   

10.
Single-crystalline Na0.5Bi0.5TiO3 (NBT) nanowires, with diameters of 100 nm and lengths of about 4 μm, were synthesized by using a simple hydrothermal method. Phase composition, morphology and microstructure of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The effects of reaction temperature and reaction time on precipitation of the NBT nanowires were investigated. It was found that reaction time significantly influenced the growth behavior of the powders in the hydrothermal system. Based on the experimental results, the one-dimensional (1D) growth mechanism of the NBT was governed by a dissolution-recrystallization mechanism. NBT ceramics derived from the nanowires showed typical characteristics of relaxor ferroelectrics, with diffuseness exponent γ of as high as 1.73.  相似文献   

11.
Laser cladding of the Fe3Al + TiB2/Al2O3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiB2/Al2O3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti3Al/Fe3Al + TiB2/Al2O3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al2O3 can react with TiB2 leading to formation of amount of Ti3Al and B. This principle can be used to improve the Fe3Al + TiB2 laser cladded coating, it was found that with addition of Al2O3, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.  相似文献   

12.
Nanocrystalline Ni1−xMnxFe2O4 (x = 0; 0.17; 0.34; 0.5) ferrite powders were successfully synthesized using the sol-gel combustion method, by using nitrates as cations source and citric acid (C6H8O7) as combustion/chelating agent. The reaction advancement was observed by means of IR absorption spectroscopy, by monitoring two characteristic bands for the spinel compounds at about 600 cm−1 and 400 cm−1, respectively. The as-synthesized powders were characterized by IR spectroscopy, X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The magnetic study shows that the saturation magnetization decreases with increasing the Mn addition, as result of the particle size reduction. The dielectric properties were measured as a function of frequency in the range of 10 Hz to 1 MHz. The real part of permittivity has values of ∼88 at 1 kHz and ∼7 at 1 Hz for x = 0. An increasing dielectric permittivity with increasing the amount of Mn is observed. For all the investigated compositions, both the real and imaginary parts of permittivity decrease with frequency.  相似文献   

13.
The X-ray diffraction Rietveld refinement of Ba[(Fe1−xCox)1/2Nb1/2]O3 with 0 ≤ X ≤ 1 shows cubic structure formation with space group Pm3m. No distinct tilting of oxygen octahedron is observed. The dielectric measurement of such a cubic system exhibited giant values (?′ > 104) in the temperature range of 298-483 K and frequency range of 102-105 Hz. An analysis of the permittivity, electric modulus, and electrical conductivity properties in these systems confirmed the presence of oxygen vacancies induced dipolar relaxation. Our investigations show that the observed extremely high dielectric constant values are predominantly the result of oxygen vacancies induced dipoles produced at the grain boundaries. Additional significant intrinsic contributions to the permittivity comes from the directly doped electrons at the unit cell, as indicated by the enhancement in the observed values of the permittivity on replacement of Fe3+ (3d5) by Co3+ (3d6). The contributions of the doped free charges and the oxygen vacancy induced dipoles are separated using the Jump Relaxation Model.  相似文献   

14.
A series of Gd1−xCaxPO4·nH2O nanorods were prepared using a simple hydrothermal reaction which was optimized by tuning the pH values of the precursor. The resulted nanorods were characterized by X-ray diffraction, transmission electron microscopy, Fourier transformation infrared spectroscopy, and alternative current impedance technique. It is demonstrated that all Gd1−xCaxPO4·nH2O nanorods crystallized in a pure hexagonal structure. For x = 0, the particle dimension decreased with increasing the pH value. For x > 0, the solid solution limit of Ca2+ in GdPO4·nH2O nanorods was about 3 mol%, below which the lattice volume increased with increasing the doping level of Ca2+. The conductivities of nanorods were highly dependent on both the particle size and Ca2+ concentration, as indicated by the increased conductivity as particle size reduces or Ca2+ doping level increases. These observations were understood in terms of the dehydration and the introduction of HPO42− defects by Ca2+ doping.  相似文献   

15.
Investigations of phase relations in the Ba-rich part of the In2O3–BaO(CO2)–CuO pseudo-ternary system at 900 °C have revealed the existence of new indium–copper oxycarbonate – Ba4In0.8Cu1.6(CO3)0.6O6.2. Rietveld refinement of the X-ray powder diffraction data combined with infrared studies gives evidence that this phase is a oxycarbonate crystallising in the tetragonal structure (space group I4/mmm) with unit cell parameters: a=4.0349(1) Å and c=29.8408(15) Å. In the binary part of the In2O3–BaO(CO2) system we have identified the occurrence of Ba4In2−x(CO3)1+xO6−2.5x oxycarbonate solid solution showing a crystal structure also described by I4/mmm space group, but with the unit cell parameters: a=4.1669(1) Å and c=29.3841(11) Å for x=1. The existence range of this phase, −0.153<x<0.4, includes chemical compositions of earlier found phases: Ba5In2+xO8+0.5x with 0≤x≤0.45 (known as the -solid solution), as well as the binary Ba4In2O7 phase. The crystal structures of both new oxycarbonates are isomorphic and related to n=3 member of the Ruddlesden–Popper family.  相似文献   

16.
Semiconducting n-CdIn2Se4 thin films have been deposited on to the amorphous and fluorine doped tin oxide (FTO) coated glass substrates using spray pyrolysis technique. The influence of solution concentration on to the photoelectrochemical, structural, morphological, compositional, thermal and electrical properties has been investigated. The PEC characterization shows that the short circuit current (Isc) and open circuit voltage (Voc) are at their optimum values (Isc = 1.04 mA and Voc = 409 mV) at the optimized precursor concentration (12.5 mM). The structural analysis shows the films are polycrystalline in nature having cubic crystal structure. The average crystallite size determined was in the range of 50-66 nm. Surface morphology and film composition have been analyzed using scanning electron microscopy and energy dispersive analysis by X-rays, respectively. The addition of solution concentration induces a decrease in the electrical resistivity of CdIn2Se4 films up to 12.5 mM solution concentration. The type of semiconductor was examined from thermoelectric power measurement.  相似文献   

17.
A new mixed-valence iron phosphate Na1.25Mg1.10Fe1.90(PO4)3 has been synthesized as single crystals by a flux technique and its structure has been refined from X-ray data to a residual R1 = 0.032. The compound crystallizes in the monoclinic space group C2/c with the parameters: a = 11.7831(3) Å, b = 12.4740(3) Å, c = 6.3761(2) Å, β = 113.643(2)° and Z = 4. The structure belongs to the alluaudite structural type, and thus it obeys to the X(2)X(1)M(1)M(2)2(PO4)3 general formula. The X(2) and X(1) sites are occupied by sodium while the M(1) and M(2) sites feature a statistical distribution of iron and magnesium.

Additional information about the cation distribution has been extracted from a Mössbauer spectroscopy study which confirmed the mixed valency of the compound. A magnetic susceptibility study has also been undertaken and has shown the compound to be antiferromagnetic with a Neel temperature of about 35 K.  相似文献   


18.
The β-phase of Au7Cu5Al4 undergoes a reversible shape-memory phase transformation, however there has been some uncertainty regarding the crystal structure or structures of the parent phase. Here we show that, under equilibrium conditions, the parent phase possesses the L21 structure between its Ap (about 79 °C) and ∼630 °C, and the B2 primitive cubic structure between ∼630 °C and its melting point. It melts directly from B2 into the liquid state and hence never achieves the random bcc A2 structure that has been previously mooted. Splat-cast samples of the alloy are martensitic, proving that development of equilibrium order and defect concentration are not pre-requisites for the A → M transformation to occur.  相似文献   

19.
Piezoelectric perovskite materials based on the solid solution (1 − x)BiScO3xPbTiO3 (BSPT) have been attracting attention for their high Curie temperature (Tc = 450 °C) and excellent piezoelectric properties. The LiNbO3 (LN), which has a Tc as high as 1150 °C, has been recently reported forming a phase pure perovskite solid solution with some perovskite structure compounds. In the current work, the effects of LN substitution on the structural and electrical properties of BSPT ceramics were investigated in the 0.36BiScO3–0.64{(1 − x)PbTiO3xLiNbO3} (BSPTLNx) system. The results of LN addition in the BSPT ceramics show significant enhancement of the piezoelectric properties. The piezoelectric constant d33, planar electromechanical coupling coefficient and remnant polarization Pr values reached 465 pC/N, 0.57 and 48 μC/cm2, respectively, for x = 0.04. The Tc gradually decreases with increasing LN content in the BSPTLNx system, due to the structure transform from the tetragonal to the rhombohedral. A typical relaxor behavior is also produced with the LN substitution in the BSPTLNx system.  相似文献   

20.
Preparation of the ternary carbide Cr2AlC was conducted by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) from the Cr2O3-Al-Al4C3 powder compact. Effects of the contents of Al and Al4C3 on the product composition and combustion behavior were studied by formulating the reactant mixture with a stoichiometric proportion of Cr2O3:Al:Al4C3 = 3:5x:y, where x and y varied from 1.0 to 1.5. When compared to those of the powder compact with Cr2O3:Al:Al4C3 = 3:5:1 (i.e., x = y = 1.0), the combustion temperature and reaction front velocity increased with content of Al, but decreased with that of Al4C3. Besides Cr2AlC and Al2O3, the final products always contained a secondary phase Cr7C3 that was substantially reduced by adopting additional Al and Al4C3 in the reactant compacts. For the sample with Cr2O3:Al:Al4C3 = 3:7.5:1 (x = 1.5), solid state combustion reached a peak temperature of 1245 °C and yielded Cr2AlC with a trivial amount of Cr7C3. Although Cr7C3 was lessened by introducing extra Al4C3, the increase of Al4C3 from y = 1.1 to 1.5 produced almost no further reduction of Cr7C3 in the final product. This is partly attributed to the low combustion temperature in the range of 1065-1095 °C for the samples with additional Al4C3, and in part, due to the role of Al4C3 which might react with Cr to form Cr7C3, Cr2Al, and Cr2AlC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号