首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过低温水热法,在图案化的p型硅衬底上合成氧化锌(ZnO)纳米棒阵列薄膜,制备出具有p-Si/n-ZnO纳米棒(NR)阵列结构的异质结太阳能电池(HSCs)。通过直流磁控溅射技术,分别在前后面板溅射沉积ITO和Al膜接触电极层。研究ZnO籽晶层的退火温度、ZnO纳米棒阵列水热合成的时间等因素对ZnO纳米棒阵列的晶体结构、表面形貌和光学性能的影响。p-Si/n-ZnO纳米棒阵列HSCs的最佳短路电流密度和总能量转换效率分别为11.475 mA·cm-2和2.0%。相比p-Si/n-ZnO薄膜HSCs,p-Si/n-ZnO纳米棒阵列HSCs的光伏性能得到了有效提高。  相似文献   

2.
首先通过水热法在透明导电基底上合成出垂直有序的ZnO纳米线阵列,再对这些ZnO纳米线进行表面处理以得到TiO2纳米管阵列。随后,这些纳米线(管)阵列被用作光阳极组装染料敏化太阳电池(DSSC),以探索它们的光电化学性能。通过研究发现,用TiO2纳米管阵列组装而成的DSSC具有0.81%的太阳能转换效率,高出ZnO纳米线阵列组装而成的DSSC 3倍以上。另外,还运用一个简单的二极管模型对这些DSSC的伏安特性(J-V)曲线进行分析。最终发现,造成DSSC性能大幅度提高的原因在于其内部并联电阻的增加以及泄漏电流的下降。  相似文献   

3.
Well-aligned ZnO nanorod arrays were synthesized by hydrothermal method on Si substrates that were covered with pre-deposited ZnO films as seed layers. The ZnO seed layers were deposited by RF magnetron sputtering. It is found that the seed layers prepared under different oxygen partial pressure sputtering parameters and annealing treatment have a great influence on the morphology of the ZnO nanorod arrays grown subsequently on them. Furthermore, growth positions of nanorod/microrod arrays were selectively controlled on the lithography-assist ZnO seed layer.  相似文献   

4.
Single-crystalline ZnO nanowire arrays with different aspect ratios and nanowire densities were prepared by the hydrothermal growing method using polyethyleneimine (PEI) as a surfactant. PEI can only hinder the lateral growth of the ZnO nanowires, which is observed by high resolution transmission electron microscopy (HRTEM) analysis. Dye-sensitized solar cells were assembled by the ZnO nanowire arrays with different thicknesses, which can be controlled by the growing time and characterized using photocurrent-voltage measurements. Their photocurrent densities and energy allover conversion efficiencies increased with increasing ZnO nanowire lengths. Short-circuit current den-sity of 4.31 mA-cm-2 and allover energy conversion efficiency of 0.87% were achieved with 12.9-μm-long ZnO nanowire arrays.  相似文献   

5.
Highly oriented ZnO nanorod arrays were suecessfully prepared on the indium tin oxide (ITO) substrate using a galvanostatic electrodeposition method.The ITO substrate was pretreated with ZnO nanoparticles via simple low-temperature solution route.The crystallinity,microstructure of surface,and optical properties of the obtained ZnO were characterized by X-ray diffraction,scanning electron microscope,and transmittance spectrum.The results indicate that the average diameter of ZnO nanorod arrays is about 30 nm,and the narrow size distribution ranges from 20 to 50 nm The nanorod arrays are growing along [001] direction with an orientation perpendicular to the substrate.When the wavelength of incident is over 380 nm,the ZnO nanorod arrays show a high optical transmission of above 95%.Furthermore,the possible growth mechanism of the nanorod arrays was discussed.  相似文献   

6.
T.-H. Yang  J.-M. Wu 《Acta Materialia》2012,60(8):3310-3320
The thermal stability of sol–gel p-type Al–N codoped ZnO films was investigated by high-resolution X-ray photoelectron spectroscopy (XPS). XPS revealed the chemical bonding states and solubility of N-related complex defects in the ZnO films. The concentrations of NO and (NC)O varied with annealing temperature, which led to the change in conduction between p-type and n-type. Variable-temperature Hall-effect measurement showed that NO acted as a shallow acceptor, with its energy level locating at ~114 meV above the valance band maximum. Transmission electron microscopy confirmed the presence of undesired carbon clusters as a graphite state in the ZnO films. In order for Al–N codoped ZnO films to exhibit p-type conductivity, samples could only be annealed in a certain range of temperatures. A hybrid structure with nanostructured ZnO homojunctions was fabricated by spin-coating the p-type Al–N codoped ZnO film on an n-type ZnO nanorod array (ZNA). The hybrid nanostructure was demonstrated to possess rectification behavior characteristic of a p–n junction. The leakage current of the nanostructured ZnO homojunctions was smaller by a factor of 2 than that of the film-based ZnO homojunction at a reverse bias of 5 V. The p-type ZnO film/n-type ZNA structure can be applied as a versatile p–n optoelectronic device.  相似文献   

7.
采用水热生长法,在钛基表面制备高度有序、尺寸可控的氧化锌纳米棒阵列,再通过静电吸附的方法在其表面自组装一层具有良好生物相容性的聚乳酸生物涂层。利用SEM,MTT,LDH方法对细胞形态和生物活性进行表征。结果表明,氧化锌阵列上细胞形态呈圆形,无铺展现象。而经聚乳酸修饰过的材料表面MC3T3细胞外基质铺展较好,细胞分泌的丝状伪足嵌入了阵列结构的空隙中,并且表面细胞数量最多,细胞活性明显高于氧化锌纳米棒及纯钛片。结果表明,聚乳酸涂层提高了氧化锌阵列的生物相容性,为细胞生长提供适宜的微环境,有效促进了细胞的黏附与增殖。  相似文献   

8.
ZnO nanorod arrays were formed by a low temperature hydrothermal process on seeded polytetraflouroethylene (PTFE) sheets. The seed layer was formed using thermal oxidation of a thin evaporated Zn film on the PTFE sheet at 300 °C in air for 10 min. The formation of ZnO nanorod arrays in the hydrothermal reactive bath consisting of hexamethylamine (HMT) and Zn ions occurred via the reaction of hydroxyl ions released during the thermal degradation of HMT with the Zn ions. The seed layer provided a template for the nucleation of the ZnO and HMT which also acted as a chelating agent that promoted growth of the ZnO along the c-axis, leading to the formation of exclusively (0 0 2) ZnO nanorods. The effect of exposure time of the seeded PTFE to the reactive solution on the formation of the nanorods was investigated. Well aligned, relatively uniform tapered 300 nm long nanorods can be formed after 8 h of exposure. Longer exposure times to 24 h resulted in the formation of more uniform nanorods with base diameter averaged of ∼100 nm and the tip diameter of ∼50 nm. XRD analysis showed that the ZnO nanorod array had a hexagonal wurtzite structure. This result is in agreement with HR-TEM observations and Raman scattering analysis. Photoluminescence study showed that a strong UV emission peak was obtained at 380 nm and a small peak at 560 nm, which is associated with green emission. The optical band gap measured from these plots was at 3.2 eV on average.  相似文献   

9.
Vertically well-aligned single crystal ZnO nanorod arrays were synthesized and enhanced field electron emission was achieved with hafnium nitride (HfNx) coating under proper sputtering condition. HfNx films with various composition have been coated on ZnO nanorod arrays using a reactive direct current (DC) magnetron sputtering system. Morphology and crystal configuration of the ZnO nanorod arrays were investigated by scanning electron microscopy and X-ray diffraction. The field emission properties of the coated and uncoated ZnO nanorod arrays were characterized. The as-grown ZnO nanorod arrays showed a turn-on electric field of 6.60 V μm− 1 at a current density of 10 μA cm− 2 and an emission current density of 1 mA cm− 2 under the field of 9.32 V μm− 1. While the turn-on electric field of the coated ZnO nanorod arrays sharply decreased to 2.42 V μm− 1, an emission current density of 1 mA cm− 2 under the field of only 4.30 V μm− 1 can be obtained. A method to accurately measure the work function of the coated films was demonstrated.  相似文献   

10.
ZnO nanowire films were produced at 90 °C using a hydrothermal chemical deposition method, and were characterised with scanning electron microscopy, optical transmission spectrometry and X-ray diffraction. The results showed that the optical band gap is 3.274–3.347 eV. Film porosity and microstructure can be controlled by adjusting the pH of the growth solution. ZnO nanowire films comprise a 2-layer structure as demonstrated by SEM analysis, showing different porosities for each layer. XRD analysis shows preferential growth in the (002) orientation. A comprehensive optical modelling method for nanostructured ZnO thin films was proposed, consisting of Bruggeman effective medium approximations, rough surface light scattering and O'Leary-Johnson-Lim models. Fitted optical transmission of nanostructured ZnO films agreed well with experimental data.  相似文献   

11.
We report on the synthesis of high-quality ZnO nanorods by combining hydrothermal growth (HG) and chemical vapor deposition (CVD) processes. Vertically aligned and closely packed ZnO nanorods were grown by HG on a sputtered ZnO seed layer on a SiO2/Si (0 0 1) substrate. The top surface of the HG-prepared ZnO nanorods showed very flat surfaces compared with that of the sputtered ZnO seed layer. Therefore, the HG-prepared ZnO nanorods were used as a new alternative seed material for the CVD growth of the ZnO nanorods. Vertical ZnO nanorods were grown by CVD on both the new HG-prepared nanorod seed material and the sputtered ZnO seed layer. The CVD-prepared ZnO nanorods on new HG-prepared nanorod seed material showed better crystalline quality and superior optical properties than the CVD-prepared ZnO nanorods on sputtered seed layer. The former showed negligible deep-level emissions at room temperature photoluminescence measurements. The intensity ratio of near-band-edge emissions to deep-level emissions from the former was about 910, but that from the latter was about 151. This implies that the HG-prepared ZnO nanorods can be used as a promising new seed material for nanostructure synthesis.  相似文献   

12.
This work describes a simple method utilizing electrophoretic deposition (EPD) as versatile technique to deposit of commercial TiO2 (P25) nanopartcles (NPs) films on the fluoride-doped tin oxide (FTO) substrate. The main goal of this study is investigating the effects of surface treatment on the properties of nanoporous P25 electrodes in order to efficiently control and optimize the main fabrication step of the dye-sensitized solar cells (DSSCs). In order to increase of the electron transfer efficiency in DSSC, post-treatment of P25 films using TiCl4 has been carried out. As a result, cell efficiencies were improved about 40%. Solar cells based on a core–shell structure, including a ZnO as shell and a P25 as core, have been investigated. Results demonstrated that ZnO/P25 film electrode was enable to enhance of short-circuit photocurrent density (JSC) and consequently solar conversion efficiency for a DSSC by 10%, compared to those of a DSSC containing a bare P25 film electrode. The results were attributed to increase the concentration of free electrons in the conduction band (CB) of P25.  相似文献   

13.
Aligned ZnO nanorod arrays and oriented ZnO nanoplates were synthesized on Si and Al substrates, respectively, using a hydrothermal method without any surfactant. The process involved the deposition of ZnO seeds on the substrate and the oriented growth of ZnO nanostructure in aqueous solution. The ZnO seeds were indispensable for the alignment of ZnO nanorods and TEM and XRD analysis confirmed that the ZnO rods are single crystalline grown along [001] direction. Al substrate caused formation of (001) surface dominated ZnO nanoplates, in which ZnO preferential growth direction was suppressed. The photoluminescence spectra of the as-grown ZnO products were measured to indicate their structural and optical quality. These oriented ZnO nanostructures are expected to be prospectively applied in nanodevices fabrication.  相似文献   

14.
Superhydrophobic zinc oxide (ZnO) coatings were synthesized by a simple and cost-effective spray pyrolysis technique (SPT) via seed assisted growth onto the glass substrates at 723 K from an aqueous zinc acetate precursor solution. Initially, the ZnO seeds were synthesized from an aqueous 0.4 M zinc acetate solution onto the glass substrates at 723 K. For the seed assisted growth of ZnO, the solution concentrations (0.1 M to 0.4 M) were used and its effect on structural, morphological, optical and wettability properties of ZnO thin films was investigated. The synthesized films were found to be polycrystalline, with preferential growth along c-axis. Scanning electron microscopy (SEM) images show the uniform distribution of spherical grains of about 60-80 nm grain size. After seed assisted growth, film surface becomes very rough. The films were specular and transmittance of thin films decreases as the concentration of the precursor solution increases. The optical absorption spectrum shows a sharp absorption band-edge at 381 nm, corresponding to optical gap energy (Eg) of 3.25 eV. All samples are superhydrophobic in nature. The Zn4 sample shows the superhydrophobicity with highest value of the contact angle (CA) i.e. 165°. Such a superhydrophobic coatings can be useful in the anti-snow, anti-fog and self cleaning surfaces.  相似文献   

15.
ZnO thin films doped with Al concentrations of 1.0, 2.0, 3.0, 4.0, 5.0 at% were prepared by a sol-gel spin-coating method on glass substrates and respectively annealed at 550 °C for 2 h in hydrogen and air. The X-ray diffraction and selected-area electron diffraction results confirm that the Al doped ZnO thin films are of wurtzite hexagonal ZnO. The scanning electron microscope results indicate that the Al doped ZnO nanorod thin films can be got by annealing in hydrogen rather than in air. The optical properties reveal that the Al doped ZnO thin films have obviously enhanced transmittance in the visible region. The electrical properties show that the resistivity of 1.0 at% Al doped ZnO thin films has been remarkably reduced from 0.73 Ω m by annealing in air to 3.2 × 10−5 Ω m by annealing in hydrogen. It is originated that the Al doped ZnO nanorod thin films annealed in hydrogen increased in electron concentration and mobility due to the elimination of adsorbed oxygen species, and multicoordinated hydrogen.  相似文献   

16.
The effect of chromium doping on the photovoltaic efficiency of dye-sensitized solar cells(DSSCs) with anodized TiO_2 nanotubes followed by an annealing process was investigated. Cr-doped TiO_2 nanotubes(CrTNs) with different amounts of chromium were obtained by anodizing of titanium foils in a single-step process using potassium chromate as the chromium source. Film features were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), energy-dispersive X-ray spectroscopy(EDX), and ultraviolet-visible(UV-Vis) spectroscopy. It is clearly seen that highly ordered TiO_2 nanotubes are formed in an anodizing solution free of potassium chromate, and with a gradual increase in the potassium chromate concentration, these nanotube structures change to nanoporous and compact films without porosity. The photovoltaic efficiencies of fabricated DSSCs were characterized by a solar cell measurement system via the photocurrent-voltage(I-V) curves. It is found that the photovoltaic efficiency of DSSCs with CrTNsl sample is improved by more than three times compared to that of DSSCs with undoped TNs. The energy conversion efficiency increases from 1.05 % to 3.89 % by doping of chromium.  相似文献   

17.
水热法制备高定向掺铝氧化锌纳米棒阵列   总被引:2,自引:0,他引:2  
为了制备高定向光电性能优异的掺铝氧化锌(ZAO)纳米棒阵列,采用溶胶-凝胶法在玻璃基片上制备掺铝氧化锌薄膜,以ZAO薄膜为种子层,通过控制掺铝量、稳定荆等工艺参数,采用水热法制备出了高定向ZAO纳米棒阵列.实验表明,铝掺杂量为2%,直径在50nm左右的ZAO纳米棒阵列薄膜具有最好的光致发光性能,表面活性剂可以促进ZAO纳米结构的棒状生长,形成高定向ZAO纳米棒阵列.  相似文献   

18.
采用简单的化学沉积结合KOH碱刻蚀的方法,在导电玻璃(FTO)上生长ZnO纳米棒阵列(ZnONRs)。用X射线衍射(XRD)、扫描电子显微镜(SEM)、电流—电压(I—V)曲线对所得样品的晶型、形貌及光电性能进行测试,结果表明:ZnONRs呈纤铅矿型;ZnONRs的形貌及光电性能与KOH的浓度及刻蚀时间密切相关,经0.1mol/LKOH刻蚀1h后可得到排列高度有序且分布均匀的ZnONRs;KOH刻蚀后的ZnONRs与未刻蚀前高密度的ZnONRs相比,其光学性能得到提高。0.1mol/LKOH刻蚀1h的ZnONRs作为太阳能电池的光阳极,其光电转换效率、短路电流、开路电压较未刻蚀的ZnONRs分别提高了0.71%、2.79mA和0.03V。  相似文献   

19.
A ruthenium (Ru) catalytic layer was assessed as the counter electrode (CE) in dye sensitized solar cells (DSSCs) by examining the effect of the Ru thickness on the DSSC performance. Ru films with different thicknesses (34, 46, 69 and 90 nm) were deposited on glass/fluorine-doped tin oxide (FTO) substrates as the CE by atomic layer deposition (ALD) at 250 °C using RuDi as the precursor and O2 as the reaction gas. Finally, a 0.45 cm2 DSSC of glass/FTO/TiO2/dye(N719)/electrolyte(C6DMII, GSCN)/Ru CE structure was prepared. The properties of the DSSCs were examined by field emission scanning electron microscopy (FESEM), four-point-probe, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), current-voltage (I–V), incident photon-to-current conversion efficiency (IPCE), and dark current measurements. FESEM showed that the crystallized Ru films had been deposited quite uniformly and conformally on the glass/FTO surface. The sheet resistance of the Ru film decreased with increasing Ru thickness. CV profiling revealed an increase in catalytic activity with increasing film thickness. The charge transfer resistance at the interface between the Ru-coated CE and electrolyte decreased with increasing Ru thickness. I–V profiling showed that the energy conversion efficiency was increased up to 3.40 % by increasing the Ru thickness. Moreover, the IPCE and dark current results showed the efficiency of the Ru-coated CE was comparable to that of a conventional platinum (Pt) CE.  相似文献   

20.
Aluminum-doped zinc oxide (ZnO) was grown on glass substrates by using RF magnetron sputtering. In order to investigate the effect of growth temperature on the mechanical properties of Al-doped ZnO films, the temperature of the substrates during deposition was controlled at room temperature (R.T.), 150 °C, and 300 °C. The crystal structure and topography of the deposited films were investigated by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The mechanical properties of films were measured by using nanoindentation and micro-reciprocating pin-on-plate tester to characterize the hardness, modulus, and tribological behavior. The tribological behavior of silicon (100) wafer was also obtained to compare with that of the Al-doped ZnO. It was found that Al-doped ZnO films with (002) oriented plane was favored at high growth temperature. The mechanical properties of the films were significantly affected by growth temperature. The film grown at room temperature showed a relatively low friction coefficient of 0.25 and high wear resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号