首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bovine and caprine caseins were cross‐linked with microbial transglutaminase (mTG). The mTG‐cross‐linked bovine or caprine casein dispersion, mixed with 14.5% maltodextrin (DE = 40), was used to prepare emulsions with 10.5% algae oil. Oxidative stability of emulsions was evaluated by peroxide values (PVs) and anisidine values. Adding liposoluble rosemary extract rich in carnosic acid and δ‐tocopherol lowered the formation of hydroperoxides and their subsequent decomposition products in emulsions. Emulsions stabilised with liposoluble rosemary extract rich in carnosic acid and δ‐tocopherol were spray‐dried at 180/95 °C. Algae oil microencapsulated with mTG‐cross‐linked bovine casein reduced PV by ≈ 34%, while the algae oil microencapsulated with mTG‐cross‐linked caprine casein with low levels of αs1‐casein reduced PV by ≈ 42% at 4 weeks of storage at 30 °C. The investigation suggests that liposoluble rosemary extract rich in carnosic acid and δ‐tocopherol effectively protected algae oil during the coating process with mTG‐cross‐linked bovine and caprine caseins. The above results clearly indicated that the choice of milk caseins (bovine vs. caprine) cross‐linked with mTG impacts the oxidative stability of spray‐dried algae oil emulsions (microcapsules) enriched with n‐3 fatty acids.  相似文献   

2.
BACKGROUND: In view of the increasing demand for fresh products in Western countries recently, there is considerable interest in commercialising restructured fish products having the appearance of fresh fish. A number of methods have been studied for the purpose of inducing cold gelification. Two of the most common methods, namely addition of alginates and addition of transglutaminases, have been studied mainly in connection with meat products. The present study deals with the use of alginate and transglutaminase as additives in cold gelification of minced hake (Merluccius capensis) muscle. The experiments were targeted on the effects of concentration and combined effects of additional additives on physicochemical characteristics and mechanical properties. RESULTS: As regards mechanical properties, the effectiveness of sodium alginate was improved by addition of a low concentration (1 g kg?1) of calcium chloride (CaCl2), whereas a higher concentration (10 g kg?1) reduced the binding ability of the alginate. The presence of sodium caseinate (15 g kg?1) in combination with microbial transglutaminase (MTGase) was important in helping to increase the work of penetration in fish gels induced at low temperature. Examination of the chemical properties of the muscle gels showed that sodium alginate did not establish covalent protein–protein bonds, while MTGase dramatically increased the number of covalent bonds formed between adjacent muscle proteins. CONCLUSION: With both ingredients, thermostable fish gels of good quality were produced at temperatures below 10 °C. Gels induced by sodium alginate were considerably improved by addition of 1 g kg?1 CaCl2. However, gels induced by MTGase were better suited for the preparation of restructured products. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
In this study, caseins micelles were internally cross-linked using the enzyme transglutaminase (TGase). The integrity of the micelles was examined on solubilization of micellar calcium phosphate (MCP) or on disruption of hydrophobic interactions and breakage of hydrogen bonds. The level of monomeric caseins, determined electrophoretically, decreased with increasing time of incubation with TGase at 30°C; after incubation for 24 h, no monomeric β- or κ-caseins were detected, whereas only a small level of monomeric αS1-casein remained, suggesting near complete intramicellar cross-linking. The ability of casein micelles to maintain structural integrity on disruption of hydrophobic interactions (using urea, sodium dodecyl sulfate, or heating in the presence of ethanol), solubilization of MCP (using the calcium-chelating agent trisodium citrate) or high-pressure treatment was estimated by measurement of the L*-value of milk; i.e., the amount of back-scattered light. The amount of light scattered by casein micelles in noncross-linked milk was reduced by >95% on complete disruption of hydrophobic interactions or complete solubilization of MCP; treatment of milk with TGase increased the stability of casein micelles against disruption by all methods studied and stability increased progressively with incubation time. After 24 h of cross-linking, reductions in the extent of light scattering were still apparent in the presence of high levels of dissociating agents, possibly through citrate-induced removal of MCP nanoclusters from the micelles, or urea- or sodium dodecyl sulfate-induced increases in solvent refractive index, which reduce the extent of light-scattering.  相似文献   

4.
微生物谷氨酰胺转胺酶对乳清蛋白的改性   总被引:1,自引:0,他引:1  
介绍了该酶的来源、性质及催化反应机理。由于乳清蛋白应用于食品加工中时,其理化功能尚不突出,所以通过谷氨酰胺转胺酶对乳清蛋白的改性,可以加强乳清蛋白的功能性质,从而合理利用资源,开发新产品,扩大其在食品中的应用。  相似文献   

5.
黄原胶对酪蛋白酸钠乳状液稳定性的影响   总被引:2,自引:0,他引:2  
研究了一定pH条件下,黄原胶浓度及剪切稀化效应对酪蛋白酸钠乳状液稳定性的影响。结果表明,在酸性条件下,黄原胶无法抑制酪蛋白的变性沉淀,乳液在制备之初,即产生严重絮凝。在中性和弱碱性条件下,黄原胶在一定浓度范围内,诱发了乳状液的排斥絮凝;体系的pH显著影响了乳状液的稳定性,pH6条件下,较低的黄原胶浓度(0.2wt%)便可赋予乳状液良好的稳定性。均质过程大大降低了黄原胶的粘度,导致乳状液的稳定性下降,与添加未经均质处理的黄原胶相比,添加量增大近一倍,才能获得稳定的乳状液。  相似文献   

6.
7.
The purpose of this research is the evaluation of a flaxseed oil-in-water emulsion, stabilized by a multi-layer structure consisting of sodium caseinate (Na-caseinate) and pectin to provide a basis for the combination of these materials for future studies. In the first step, the o/w emulsion (10 g oil, 90 g aqueous phase, and a pH 6.8) with varying concentration of Na-caseinate was investigated. Second, the pectin solution (0.05–1.5 g/100 g solution) was added to the primary emulsions and the pH was adjusted to 3.0. The emulsions were characterized by mean particle size (dynamic light scattering and static light scattering techniques), ζ-potential, turbidity value, creaming index, and the visualization of the microstructure. A clear separation of the oil phase at low protein contents and destabilizing by depletion flocculation at high protein content were observed. Extensive droplet flocculation and coalescence were determined until the pectin concentration reached 0.5 g/100 g solution for the secondary emulsion. After 7 days of storage, a 1.5 g/100 g solution pectin content had good stability with a relatively small size distribution, high turbidity value, and no cream phase separation.  相似文献   

8.
通过对酪蛋白酸钠(SC)与阿拉伯胶(GA)复合体系浊度、粒径和Zeta电位的表征来研究p H、SC/GA浓度比、SC与GA总浓度和离子强度(Na Cl浓度)对两者相互作用及纳米粒形成的影响,利用透射电镜(TEM)表征纳米粒的微观形貌,并对纳米粒的贮藏稳定性进行考察,最后借助红外光谱(FTIR)和荧光光谱探讨SC与GA相互作用形成纳米粒的机制。结果发现:p H、离子强度可显著影响SC和GA两者相互作用及纳米粒的形成,表明两者形成纳米粒的主要作用力是静电相互作用。同时得到SC和GA相互作用形成稳定纳米粒的条件为:SC/GA浓度比1∶1,p H4.2,SC与GA总浓度3.0 mg/m L,Na Cl浓度10 mmol/L。在此条件下形成的纳米粒粒径约为142 nm,Zeta电位约为-21.43 m V,于4℃贮藏30 d后仍保持稳定。TEM结果显示纳米粒呈球形。FTIR证实两者之间的静电相互作用发生在SC中的-NH+3和GA中的-COO-之间。荧光光谱表明SC和GA通过静电相互作用形成纳米粒的结合是低亲和性的。   相似文献   

9.
10.
目的:本研究旨在考察新型鱼油微球的制备方法以及初探其氧化稳定性。方法:利用电共挤出技术制备新型\  相似文献   

11.
Clove oil was emulsified in 1% w/w chitosan (CC emulsions) and 2.5% w/w sodium alginate matrix (CA emulsions) containing Tween 80 as the surfactant. Different homogenization speeds (5,000, 10,000, 15,000 and 20,000 rpm) were used to produce the emulsions, and the stability of the emulsions during storage (29 days) was determined. The stability of the emulsions containing clove oil prior to the solidification process was assessed when chitosan and sodium alginate were used as encapsulating materials. Different homogenization speeds resulted in polydisperse emulsions with a size of 2–3 μm and 90% of stability after 29 days of storage. Different homogenization speeds did not significantly affect the concentrations of the active compounds contained in the emulsions. However, these concentrations changed significantly after 29 days of storage when sodium alginate was used to make the emulsions and the homogenization speeds were ≥ 10,000 rpm. High temperature caused by the high viscosity of the solution and high energy dissipation during homogenization suggested that the emulsions composed of sodium alginate were unstable. Chitosan enabled a longer processing time during the clove oil encapsulation process compared to sodium alginate, when emulsification by homogenization was used. The stability of the emulsion of the clove oil-in-chitosan matrix prior to the solidification step was superior.  相似文献   

12.
以化学氧化剂的氧化作用和蛋白酶的水解作用为预处理方法,研究了其对自制的微生物谷氨酰胺转胺酶(MTG)对羊毛织物性能改善作用的影响.结果表明,除双氧水外,经氧化剂高锰酸钾、亚硫酸钠、次氯酸钠和所选用的3种蛋白酶预处理后,MTG可使织物的毡缩率下降.织物经化学氧化剂与蛋白酶相继作用,可明显提高MTG的作用效果,毡缩率可降至4.3%~2.3%,并对化学氧化剂及蛋白酶引起的织物强力损伤起到了一定的修复作用,与没经过MTG作用的织物相比强力提高了30%左右.  相似文献   

13.
This study aimed to evaluate the effects of microbial transglutaminase (MTG)‐mediated modification on the structure, digestibility and immunoreactivities of glycinin. Glycinin was separated from soya bean and cross‐linked with MTG, and the sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) showed that the molecular weight of cross‐linked glycinin was higher than that of native glycinin. Individual MTG cross‐linking could maintain stable secondary structures and spatial structure. Sequential heat denaturation and MTG cross‐linking could promote the unfolding of protein structures and reduce their hydrophobicity. The digestibility of glycinin was decreased, and its immunoreactivities were increased because of MTG‐induced structural alteration, including primary and spatial structures.  相似文献   

14.
多不饱和脂肪酸是一类对人体健康有益的生物活性物质,微藻油脂富含多不饱和脂肪酸,是天然可食用的潜在油源。利用微藻油脂开发制备型功能性油脂,替代动植物天然功能性油脂,不仅可提高天然功能性油脂的品质,解决供应问题,而且有望得到新的功能性油脂制品。对酶法制备功能性油脂的方法、常见微藻的油脂含量及其油脂的脂肪酸组成进行综述,并对酶法改性微藻油脂制备富含多不饱和脂肪酸的单酰甘油酯、结构三酰甘油酯、功能性磷脂等功能性油脂的研究进展进行了介绍。酶法改性微藻油脂制备功能性油脂是高值化利用微藻油脂的新途径。  相似文献   

15.
Orhan Onur Askin  Birol Kilic 《LWT》2009,42(10):1590-1596
Effects of microbial transglutaminase (MTGase) and its combinations with sodium caseinate (SC) or non-fat dry milk (NFDM) on quality of salt-free, low fat turkey döner kebab were investigated. The purpose of this study was to prevent quality deteriorations (e.g. cooking loss, textural problems) caused by a lack of salt in the product. The results of this study indicated that the use of MTGase can minimize textural quality loss caused by a lack of salt in turkey döner manufacture (p < 0.05). When the enzyme was combined with SC, or NFDM, its effect on texture was enhanced (p < 0.05) and improved cooking yield, moisture and sensory properties compared to the corresponding control manufactured without the enzyme, salt, SC and NFDM. (p < 0.05), however, there was no significant effect on pH and color As a result, the possible quality problems which may occur in salt free, low fat turkey döner can be overcome by the use of combinations of MTGase with SC or NFDM.  相似文献   

16.
微生物转谷氨酰胺酶催化聚合酪蛋白酸钠研究   总被引:10,自引:1,他引:10  
研究了不同条件下微生物转谷氨酰胺酶 (MTGase)催化酪蛋白酸钠聚合。结果显示 ,MTGase较易催化α 以及β 酪蛋白 ,而不易催化κ 酪蛋白 ,随着酪蛋白量的不断下降 ,而形成的生物聚合物量不断增多。MTGase催化酪蛋白酸钠聚合的较佳条件如下 :酶量 /酪蛋白酸钠比例为 10~ 2 0U/g ,pH 6 0~ 8 0 ,最适催化温度为 37~ 5 0℃。  相似文献   

17.
BACKGROUND: The water absorption of wheat gluten plays an important role in the weight, volume and form ratio of the breads. In this paper, hydrothermal treatment and microbial transglutaminase (MTGase) modification were combined to improve the water absorption ratio (WAR) of wheat gluten. To understand the increases in WAR, the changes in MTGase reaction after gluten hydrothermal treatment were also investigated. RESULTS: The sole hydrothermal treatment improved the WAR of gluten. The gluten treated at 100 °C for 30 min exhibited the highest WAR value (2.03 g g?1 gluten) while the WAR of the control without hydrothermal treatment was 1.5 g g?1 gluten. When gluten was exposed to 90 °C for 30 min followed by incubation with MTGase for 5 h, its WAR reached 2.48 g g?1 gluten. In contrast to control gluten, the surface hydrophobicity of the gluten preheated at 90 °C for 30 min increased and fluctuated in a different way during the following MTGase reaction. Meantime, the trend in the amount of soluble protein of preheated gluten was also changed in the progress of MTGase reaction. CONCLUSION: Hydrothermal treatment followed by MTGase reaction is an efficient approach to improve the WAR of wheat gluten. The analysis of catalytic process, including determination of ammonia, gluten surface hydrophobicity, soluble protein and SDS–PAGE, suggested that hydrothermal pretreatment accelerated the cross‐linking reaction and may alter the ratio of gluten deamidation catalysed by MTGase, which induced an increase in the WAR. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Beef plasma protein (BPP) and egg white, at levels of 10, 20 and 30 g kg−1, and sodium ascorbate (SA) and microbial transglutaminase (MTGase), at levels of 1, 2 and 3 g kg−1, were individually added into red tilapia surimi. This gel was set at 40 °C for 90 min followed by heating at 90 °C for 30 min. Gel qualities were analysed and compared with those of non-supplemented red tilapia control gel. Compared with the control, each additive significantly affected gel strength due to an increase in breaking force. Although BPP could improve texture characteristics, higher addition levels of BPP significantly affected gel whiteness. The addition of SA and MTGase were found to increase surimi gel strength and improve whiteness. Amongst all treatments, the addition of 2 g kg−1 MTGase was found to provide the best gel qualities.  相似文献   

19.
Algae oil-in-water emulsions were prepared using sodium caseinate (SC, 0.5%), whey protein concentrate (WPC, 0.5%), and a mixture of TWEEN80 (T80, 0.5%), and SPAN80 (SP80, 0.6%), and their emulsification and oxidative stabilities during storage were compared. Oil droplet sizes of SC- and T80+SP80-emulsions were smaller than that of WPC-emulsion. Serum layer appeared in all emulsions from day 15, and serum layer thicknesses were higher in WPC-emulsion than SC- and T80+SP80-emulsions, but an excess layer oil was observed only at the top of T80+SP80-emulsion until day 36. According to conjugated dienes, aldehydes, hydroperoxide and TBARS values, the oxidative stability of SC-emulsion was better than those of WPC- and T80+SP80-emulsions. This trend was also observed in fatty acid profiles of the emulsions showing the largest DHA reduction and palmitic acid increase in T80+SP80-emulsion, followed by WPC- and SC-emulsions. In present study, sodium caseinate formed stable algae oil-in-water emulsions with excellent antioxidative activity.  相似文献   

20.
ABSTRACT:  The potential of sodium alginate for improving the stability of emulsions containing caseinate-coated droplets was investigated. One wt% corn oil-in-water emulsions containing anionic caseinate-coated droplets (0.15 wt% sodium caseinate) and anionic sodium alginate (0 to 1 wt%) were prepared at pH 7. The pH of these emulsions was then adjusted to 3.5, so that the anionic alginate molecules adsorbed to the cationic caseinate-coated droplets. Extensive droplet aggregation occurred when there was insufficient alginate to completely saturate the droplet surfaces due to bridging flocculation, and when the nonadsorbed alginate concentration was high enough to induce depletion flocculation. Emulsions with relatively small particle sizes could be formed over a range of alginate concentrations (0.1 to 0.4 wt%). The influence of pHs (3 to 7) and sodium chloride (0 to 500 mM) on the properties of primary (0 wt% alginate) and secondary (0.15 wt% alginate) emulsions was studied. Alginate adsorbed to the droplet surfaces at pHs 3, 4, and 5, but not at pHs 6 and 7, due to electrostatic attraction between anionic groups on the alginate and cationic groups on the adsorbed caseinate. Secondary emulsions had better stability than primary emulsions at pH values near caseinate's isoelectric point (pHs 4 and 5). In addition, secondary emulsions were stable up to higher ionic strengths (< 300 mM) than primary emulsions (<50 mM). The controlled electrostatic deposition method utilized in this study could be used to extend the range of application of dairy protein emulsifiers in the food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号