首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气压伺服系统高性能鲁棒控制器的设计   总被引:2,自引:1,他引:1  
2自由度控制器越来越在伺服控制中显示其优越性。2自由度控制利用反馈控制来保证稳定性,利用前馈保证轨迹跟踪性能。首先辨识得到了气压系统的闭环传递函数。基于闭环系统辨识模型设计了零相位误差前馈控制器(ZPETC),ZPETC将闭环系统带宽拓宽为100 rad/s左右。系统的干扰抑制能力、鲁棒稳定性由控制器中反馈环节保证。设计了基于干扰观测器的内环反馈控制;外环反馈仍为位置反馈环节。与PID控制比较,整个控制器在试验中得到了良好的轨迹跟踪精度。  相似文献   

2.
直线电机精密定位平台轨迹跟踪控制器设计   总被引:2,自引:1,他引:2  
为了实现直线电机精密定位平台的位置和速度的轨迹跟踪控制,本文基于内模控制(IMC)的基本原理,在直线电机精密定位平台参数辨识的基础上,设计了定位平台速度环的模型状态反馈(MSF)控制器和基于位置环PID和速度环MSF的级联控制器。将PID/MSF级联控制器与速度/加速度前馈控制(VFC/AFC)相结合,构成了PID/MSF+VFC/AFC的复合轨迹跟踪控制器。该复合轨迹跟踪控制器通过整定速度前馈的增益来改善位置环偏差控制的跟踪滞后现象和动态响应,增加控制系统的稳定性和伺服精度;通过整定加速度前馈的增益在不减小级联控制器位置环增益的前提下,减小速度前馈带来的超调量,提高轨迹跟踪精度。基于MATLAB/dSPACE实时仿真控制平台,实现了某直线电机平台的轨迹跟踪控制。仿真和实验结果表明,该轨迹跟踪控制器的轨迹跟踪精度为±0.028 mm,定位精度为±4 μm,满足直线电机精密定位平台轨迹跟踪控制的要求。  相似文献   

3.
控制器包括前馈项与反馈补偿,前馈用以减小加、减速段跟踪误差,反馈项用以提高系统鲁棒性并确保匀速段误差的收敛。然而实际中存在建模误差,基于名义模型计算得到的前馈系数不够准确。此外不确定项使得多自由度之间存在耦合,且无法确保跟踪误差的收敛。以平面电动机为研究对象,为提高其运动与定位精度,提出一基于前馈辨识与反馈非线性复合控制方法,并利用Lyapunov理论证明该算法的稳定性。其中前馈系数通过PD控制试验求解。反馈控制器中鲁棒项用以补偿建模误差以减小多自由度耦合并提高鲁棒性,非线性项采用基于误差幅值的变增益方法,用以抑制低频扰动并避免噪声的引入。试验结果表明,该方法明显减小轨迹跟踪误差,提高系统鲁棒性与伺服性。  相似文献   

4.
针对DSP芯片TMS320F2812用于采集编码器脉冲的计数最大值小于反馈的总脉冲数最大值,以及伺服控制中的跟踪误差等问题,将偏差累加法和前馈控制运用到伺服控制中。开展了电机角度的处理和位置跟踪精度的分析,建立了电机电角度和脉冲数,以及跟踪误差和前馈系数之间的关系,在安装了分辨率为0.5μm海德汉增量式光栅的永磁直线同步电机平台上,只通过在软件上采取P+前馈补偿来提高伺服控制系统的性能,而不需要采用额外的计数芯片或采用更高级的DSP。基于Simulink搭建了电机控制系统的模型,仿真分析了3种给定位置曲线下系统的跟踪误差情况,并对梯形加减速位置给定曲线进行了实验验证。研究结果表明,P+前馈补偿控制可以大大减小位置跟踪误差。  相似文献   

5.
超精密多输入多输出(Multiple-input multiple-output, MIMO)运动台是集成电路制造装备——光刻机的核心部件之一,其轨迹跟踪性能是保证光刻机产率和分辨率的关键。提出一种高效的数据驱动MIMO定结构前馈控制方法,有效补偿参考轨迹引入的伺服误差,降低各自由度间的耦合,从而提高光刻机超精密运动台对不同轨迹跟踪任务的适应性及跟踪性能。采用多项式对MIMO前馈控制器进行参数化,以保证前馈控制器的固有稳定性及其对变轨迹的鲁棒性。利用脉冲响应实验法无偏估计过程灵敏度函数矩阵的马尔可夫参数,进而建立高效的数据驱动参数优化算法,根据伺服系统的输入-输出数据迭代优化MIMO前馈控制器参数。所提方法无需对光刻机运动台建模,且每次迭代仅需一次轨迹跟踪实验。将所提方法应用于课题组自主研发的光刻机硅片台,2种参考轨迹的跟踪实验结果验证所提方法在有效提高轨迹跟踪性能的同时降低各自由度间的耦合。  相似文献   

6.
针对直线电机的强非线性和时变特性,采用模型参考自适应控制(MRAC)方法对SISO直线电机闭环位置控制器进行了研究。利用偶极子对消建立了简化的永磁直线电机二阶数学模型,提出了基于局部参数最优化MIT(梯度)方案和全局稳定性理论的Lyapunov方案下的二阶直线电机位置模型参考自适应控制器,并对自适应控制器下的直线电机闭环系统稳定性进行了分析研究。在相同的前馈加反馈的控制器下,对这两种方案下的实验结果进行了对比分析。研究结果表明,基于Lyapunov第二方法设计的二阶控制器比MIT方法下的二阶控制器更能实现对三阶点到点轨迹输入信号的快速响应和跟踪,证实了直线电机位置自适应控制的有效性。  相似文献   

7.
基于前馈及自适应滤波的零跟踪误差伺服控制器   总被引:1,自引:0,他引:1  
针对常规进给数控伺服系统中由于存在跟踪误差从而导致加工几何精度下降的现象,利用数控加工轨迹已知的特点,提出了基于自适应滤波的前馈控制方案。该方案通过速度精插补器产生速度前馈给定信号;同时该位置给定通过对称滤波器施加位置反馈,消除位置环重复给定的影响;并采用广义最小二乘法进行对象辨识以保证该滤波器的参数匹配。通过分析证明了该方案能在理论上实现无跟踪误差的伺服控制,并通过Matlab仿真验证了其有效性。  相似文献   

8.
针对非最小相位系统中的轨迹跟踪控制问题,基于非最小相位系统的闭环注入体系结构,对非最小相位系统的前馈控制器设计方法、模型逆技术以及自适应控制进行了研究。首先,采用非最小相位零点忽略技术、零相位误差跟踪控制技术和零幅度误差跟踪控制技术设计了系统的前馈控制器,并对3种模型逆技术进行了分析;在此基础上针对系统中非最小相位零点的偏移问题,采用遗忘因子最小二乘法实现了前馈控制器的自适应;最后进行了仿真和试验。研究结果表明:相对于使用零相位误差跟踪控制技术和非最小相位零点忽略技术,采用零幅度误差跟踪控制技术设计的前馈控制器能够更有效地提高非最小相位系统的跟踪精度,系统的轨迹跟踪误差分别减少了61.45%和56.27%;使用自适应算法能够实现对系统参数变化的自适应控制,提高了系统的抗干扰性能。  相似文献   

9.
液压机械臂具有高度非线动力学特性,末端轨迹跟踪误差大。为此,提出一种辨识动力学参数的基于模型的控制算法(Model-basedcontrol,MBC)。该控制算法由外环的液压缸位置反馈控制器、内环的力控制器以及前馈流量补偿控制器三部分输出叠加组成。力控制器充分考虑液压机械臂动力学模型,动态补偿惯性力、重力和摩擦力等干扰力对控制精度的影响;位置控制器用以消除液压执行器造成的力偏差;前馈流量补偿器根据液压执行器动力学模型计算流量补偿量,提高系统响应与精度。针对动力学模型中存在的参数不准确问题,采用了最小二乘参数辨识的方法,在激励轨迹下获取液压机械臂动力学参数精确值。试验结果表明,所提出的辨识动力学参数的MBC控制算法相比3D模型参数的MBC控制在自由空间运动位置跟踪精度提升了39.24%,相比与传统PID控制提升了93%,显著提高了轨迹跟踪精度。  相似文献   

10.
介绍了用于一对多激光通信组网控制系统的光斑跟踪闭环系统。在伺服转台位置闭环的基础上,讨论以CCD相机为敏感器,以二维伺服转台为执行器的光闭环系统。介绍了跟踪系统的数学原理,研究了光闭环各环节的静态动态误差及开环闭环响应。在理论计算和数学仿真后,编写了闭环跟踪程序。采用经典PID控制与前馈相结合的控制算法,进一步提高了伺服带宽,保证了系统的稳定性。对星间激光通信的光斑位置进行了跟踪试验,结果显示跟踪误差为3σ≈136μrad,基本符合空间激光通信组网系统激光束的指向要求。得到的结果验证了控制策略的可行性,为多光束伺服打下了基础。  相似文献   

11.
自动驾驶横向运动控制的改进LQR方法研究   总被引:1,自引:0,他引:1  
针对自动驾驶横向运动控制问题,提出一种带有前馈控制的改进LQR横向运动控制方法.首先,利用二自由度车辆动力学模型构建了路径跟踪误差动力学模型,设计了自动驾驶LQR控制器以及前馈控制器.随后,针对LQR控制器参数进行分析,提出一种基于路径跟踪误差的参数计算方法和一种基于车-路位置关系的参数调整规则,以此实现LQR控制器的...  相似文献   

12.
在对AOD炉氧枪直线电机伺服控制系统数学模型进行研究的基础上,针对直线电机位置伺服控制系统要求有较好的位置跟踪性能的特点,提出了基于对象模型的位置前馈跟踪控制策略。研制出了基于数字信号处理器DSP的直线电机位置伺服控制系统,即位置环为数字控制,由DSP完成,用于实现位置前馈跟踪控制算法和较高的位置控制精度。实验结果:仿真曲线和实验曲线基本吻合。  相似文献   

13.
为实现高密度LED焊线机上邦头运动轨迹的精确跟踪,降低因其轨迹偏差而产生的废品率。提出了一种基于迭代学习做前馈控制的前馈+反馈二自由度控制算法。首先对音圈电机进行机理分析,建立了其数学模型,以此为基础,给出了音圈电机轨迹跟踪的整体控制方案,并且结合焊线机上邦头超高加速度(20g)和整定时间短的运动特点后设计了带遗忘因子的PD型闭环迭代学习控制算法。对所提出的带遗忘因子的PD型闭环迭代学习控制的收敛性进行了理论分析,并且通过MATLAB中的SIMULINK模块进行了动态仿真,验证了该算法下的音圈电机系统响应速度显著提升,位置误差的收敛稳定可靠,改善了高密度LED焊线机上邦头的轨迹跟踪性能。  相似文献   

14.
为了解决2自由度门式起重机器人系统的吊运轨迹精确跟踪控制和反晃动的有效消除,在建立其非线性动力学模型的基础上,详细分析其所呈现的微分平坦性,指出这种微分平坦性对精确轨迹的生成带来了很大的便利;接着分析了其前馈控制器和基于微分平坦性的反馈轨迹跟踪控制器,指出其具有微分平坦性的动力学系统是非线性的,故其所对应的状态方程是非线性的,但可通过状态变换实现无反馈精确线性化,从而得到一个完全能观完全能控的线性系统;若对该线性系统施加一个误差线性反馈器,就得到输出解耦的闭环系统,这样通过调整反馈增益可使吊具的轨迹误差实现全局渐近收敛;仿真结果验证了理论研究结论的正确性,同时表明吊具在低速运动时,摩擦对起重机器人系统的驱动力输入的影响不大。  相似文献   

15.
为克服传统鲁棒控制器无法兼顾系统的性能和鲁棒性要求的缺陷,本文将鲁棒回路成形理论与二自由度理论相结合,通过引入前置和后置补偿对象,对开环奇异值进行整形,以使最终的闭环系统满足期望的性能指标。控制器的结构采用前馈加反馈的方法,使被控对象具备抑制扰动和强跟踪性能力。基于改进的结构设计了航空发动机多变量鲁棒回路成形控制器,仿真结果表明,所设计的控制器具有良好的跟踪和鲁棒特性,满足航空发动机的控制要求。  相似文献   

16.
针对伺服作动器动态加载测试需求,提出由直线电机驱动增力模块对伺服作动器进行动态加载,建立了加载系统的数学模型,并设计了加载系统多闭环与前馈的复合控制方案。其中,基于前馈控制减小系统相位滞后;针对加载过程中因伺服作动器系统位置闭环控制对加载系统产生的强位置干扰,基于结构不变原理进行前馈补偿以抑制多余力;针对加载系统位置环受到不确定的位置干扰问题,将模糊自适应PID用于加载系统力闭环控制,通过实时调节PID控制参数,降低位置干扰对加载系统造成的影响,提高系统的适应能力。仿真试验结果表明,加载系统具有良好的动态跟踪品质,在基于结构不变性原理的前馈补偿控制下大部分多余力得到了有效的抑制,而模糊PID相比传统PID控制,进一步抑制了多余力、减小了力跟踪误差。  相似文献   

17.
电液马达伺服系统中存在各种类型的扰动,包括参数不确定性和不确定非线性,制约着其高精度位置控制。针对电液马达伺服系统高精度位置跟踪控制,考虑系统的黏性摩擦特性以及外干扰等建模不确定性,提出了一种基于鲁棒自适应的电液马达伺服系统高精度位置控制策略。所提出的全状态控制器通过自适应对模型不确定性进行估计及前馈补偿,提高了系统的低速伺服性能;通过自适应对未建模干扰等不确定性的上界进行估计并前馈补偿,提高了系统对外干扰的鲁棒性。所设计的闭环控制器还能保证系统获得渐近跟踪性能,对比仿真验证了其可行性。  相似文献   

18.
张军  许洪龙 《机械传动》2020,44(1):28-34
当前,导致多轴工业机器人轨迹跟踪误差的主要非线性因素是各轴上的关节非线性和不同轴间的动力学耦合效应。对此,提出了一种考虑关节非线性的串联双连杆机械臂模型的工业机器人运动控制方法。构造了机械臂运动学和动力学模型,提出了一种参数化建模方法,将连杆的非线性刚度和摩擦力直接辨识为关节非线性,并将该方法应用于具有低频振动特性、对轨迹性能具有重要影响的典型多轴工业机器人的串联双连杆臂,再现串联双连杆机械臂的运动状态,通过数值模拟和实验对比,验证了该方法的有效性。采用含可变陷波滤波器的反馈闭环控制和动态前馈补偿2自由度控制两种控制方案,提高机械臂轨迹跟踪和残余振动抑制的性能。结合4种不同运动形式,开展实验研究,与常规PI轨迹跟踪控制方法进行对比分析。结果表明,采用具有可辨识双连杆动力学模型和带可变陷波滤波器反馈闭环回路的2自由度控制方案能够提高轨迹追踪和残余振动抑制性能。  相似文献   

19.
通过直线伺服鲁棒跟踪控制方法提高轮廓加工精度   总被引:2,自引:0,他引:2  
为了减小零件加工的轮廓误差,提出了一种采用直线伺服驱动的零相位跟踪控制器(ZPETC)和干扰观测器 (DOB)相结合的鲁棒跟踪控制策略。零相位误差跟踪控制器作为前馈跟踪控制器,提高了快速性,使系统实现准确跟踪;基于干扰观测器的鲁棒反馈控制器补偿了外部扰动、未建模动态、系统参数变化和机械非线性等不确定因素,并根据预测到的干扰信息对各轴进行补偿以消除干扰对系统的影响,从而保证了系统的强鲁棒性能。仿真结果表明所提出的控制方案是有效的,既能实现完好跟踪,又有较强的鲁棒性能,从而提高了轮廓加工精度。  相似文献   

20.
永磁直线同步电动机(PMLSM)伺服系统在跟踪周期性输入时,PMLSM的端部效应和摩擦力所造成的周期性推力波动影响系统的跟踪精度。同时,电动机本身所存在的响应滞后会造成输入与输出之间的相位差,影响系统的跟踪性能。为达到零相位误差跟踪的目的,速度控制器采用伪微分前馈反馈(PDFF),位移控制器采用零相位误差跟踪重复控制(ZPETRC),将重复控制(RC)和零相位误差跟踪控制(ZPETC)相结合,重复控制用以抑制周期性跟踪误差,零相位误差跟踪控制用以减小系统的相位差,实现对周期性输入信号的精确跟踪。理论推导与仿真结果表明,该控制方案有效地抑制PMLSM伺服系统的周期性跟踪误差,补偿了时间滞后所造成的相位误差,使系统对周期性输入信号具有良好的跟踪特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号