首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通常在气体轴承相关计算中简化了雷诺方程,忽略了惯性力的影响。而当轴承转速非常大时,气体的惯性力影响增大,忽略惯性力会带来较大误差。建立考虑惯性力的高速螺旋槽气体止推轴承理论计算模型,采用有限元法求解雷诺方程,得到考虑惯性力时的气膜压力分布和轴承承载力,并分析转速变化时轴承承载力的变化。结果表明,高转速时气体的惯性力会显著降低轴承承载力。分析50 000 r/min高转速下各参数变化对承载力的影响。结果表明:螺旋槽深度及槽长比变化时,承载力均会出现极大值,且在出现极大值时惯性力的影响最大;随着气膜厚度增大,承载力逐渐下降,且惯性力的影响逐渐增大;随着螺旋槽数量增加,承载力逐渐增大,而惯性力的影响较稳定。分析转子轴线倾斜对承载力的影响,结果表明在相同转速及相同轴承参数下转子轴线倾斜时承载力略微增大。  相似文献   

2.
为优化动静压气体止推轴承的承载特性,设计一种具有螺旋槽和狭缝节流器结构的动静压气体止推轴承,采用Fluent对轴承静态特性进行仿真分析,通过改变主轴转速、供气压力,研究气膜厚度、螺旋槽宽度、狭缝厚度等参数对轴承静态特性的影响。结果表明:相对狭缝节流止推轴承,增加螺旋槽结构可以提升轴承的动压效应增强,从而提升轴承的承载力和刚度;相同条件下,气膜厚度越大,轴承的承载力和刚度越小;主轴转速和供气压力增加,承载力和刚度均提升明显;螺旋槽宽度增加,轴承的承载力和刚度先增大后减小;狭缝厚度增大,轴承的承载力先增大后不变,刚度先增加后减小;狭缝深度提升,轴承的承载力减小,刚度先增大后减小。  相似文献   

3.
以螺旋槽小孔节流动静压气体轴承为研究对象,运用变分法求解雷诺方程,利用Fluent软件对轴承静态特性进行仿真分析,研究供气压力、偏心率、转速以及节流孔直径、螺旋槽宽度和深度对轴承静态特性的影响规律。结果表明:相同偏心率下,随供气压力的升高,轴承静态特性增强;相同供气压力下,偏心率越大,承载能力越高,刚度越小;螺旋槽能够显著提高轴承静态特性,且转速越大,螺旋槽对轴承的动压效应越好;保证其他结构参数不变,轴承静态特性随螺旋槽宽度的增加先增大后减小,螺旋槽深度和节流孔直径越小越有利。  相似文献   

4.
《轴承》2017,(11)
利用流体动力学Fluent软件中6 DOF被动型网格模拟分析球面螺旋槽动静压气体轴承在不同转速下的运动状态,结果表明:随转速的增加,轴承转子的振动幅度呈先减小后增大的趋势,当转速达到45 000 r/min时,轴承出现工频以外的2倍频涡动;当转速达到55 000 r/min时,轴承出现多种频率的涡动,此时轴承处于失稳状态。  相似文献   

5.
为研究螺旋槽动压径向气体轴承承载特性,运用SolidWorks软件建立其物理模型。基于气体润滑基本方程Navier-Stokes方程,推导出可压缩非定常雷诺方程式。应用CFD技术和流体动力学Fluent软件对气体润滑基本方程Navier-Stokes方程直接求解,得到轴承在不同转速条件下的压力分布,以及轴承承载能力随螺旋槽动压径向轴承结构参数和运行参数的变化规律。结果表明;螺旋槽气体动压轴承在偏心方向气膜厚度最小,压力相对其他区域较大,随着转速的提高,轴承的动压效应更加显著,使得最大压力值逐渐增大;随着槽长、槽深比、槽数等结构参数的增加,以及偏心率、转速等运行参数的增加,轴承承载能力增大;而随着半径间隙的增大承载力减小。研究结果为螺旋槽动压径向气体轴承的设计及优化提供理论依据。  相似文献   

6.
起飞转速是空气轴承的重要性能指标。以螺旋槽空气轴承为研究对象,运用摄动法求解等温可压缩条件下螺旋槽气体润滑轴承压力分布的微分方程,得到空气轴承压力分布及承载力等特性;以最大承载力为目标,计算螺旋槽空气轴承的结构参数,并对设计的空气轴承进行试验,探究其不同载荷下的起飞速度。试验结果表明:空载状态下,转速约为1 200 r/min时空气轴承的转子与轴承套脱离接触,达到起飞速度;螺旋槽空气轴承的起飞速度与起飞转矩均随着的载荷的增加而逐渐升高,随着转速的升高,轴承的承载能力也越来越大。研究表明所设计的螺旋槽空气轴承具有良好的性能,为后续螺旋槽轴承设计优化及实际应用提供了理论与实践基础。  相似文献   

7.
李云龙  董志强 《轴承》2022,(1):23-28+40
基于纳维-斯托克斯(N-S)方程建立了泵入型螺旋槽动压推力气体轴承仿真三维模型,分析了在变工况运行中不同的结构参数对螺旋槽动压气体推力轴承气膜承载力的影响,结果表明:槽深为30~50μm,螺旋角为18°~36°,台区轴承间隙为4~10μm,槽内径比为0.6~0.8,槽宽比为0.7~0.9,槽数为12~25时,该轴承的气膜承载力达到最大;轴承结构不同时,轴承的气膜承载力由大到小排序为凸型槽、平底槽、凹型槽,且泵入型大于泵出型。  相似文献   

8.
以球面螺旋槽气体动压轴承为研究对象,建立三维微气膜瞬态流场数学模型,采用流体动力学软件,对轴承三维气膜压力场进行仿真分析,得到使轴承承载能力最大的结构参数和运行参数。研究在最大承载力下,不同转速和偏心率对气体轴承瞬态刚度系数和阻尼的影响规律,探索气浮轴承瞬态非线性动力学行为。模拟出转子受转速影响下的轴心轨迹图,研究轴承-转子系统的稳定性。研究结果表明:槽宽比、槽深比、偏心率对轴承承载特性的影响明显;提高转速和偏心率有助于轴承的稳定,但随着转速的升高,轴承转子系统的稳定性接近临界状态,导致轴承转子系统不稳定,而较大的偏心率,易导致轴承产生碰摩现象,也破坏了轴承的稳定性,因此,在轴承设计过程中应合理选择轴承的设计参数,提高轴承的综合性能。  相似文献   

9.
以螺旋槽动静压气体轴承气膜为研究对象,基于计算流体力学与六自由度耦合方法,模拟支撑气膜的流动以及刚体转子的运动,通过分析轴心轨迹及其频谱特征,研究定子轴线偏移、倾斜、定子尺寸误差以及粗糙度等加工及装配特征对动静压气体轴承运动状态的影响规律。结果表明:装配误差对轴承稳定性影响较大,当转速达到30 000 r/min,定子轴线偏移误差以及定子轴线倾斜误差分别达到2 μm以及2°时,转子振幅明显增加,轴承运动状态均为极限环运动,处于临界稳定状态,因此为保证气体轴承运动稳定性,应确保气体轴承的轴线装配精度;而在轴承对中稳定情况下,加工误差对轴承稳定性影响不大。研究结果为球面螺旋槽动静压气体轴承的加工及装配工艺提供了理论参考。  相似文献   

10.
为进一步改善小孔节流动静压气体轴承的稳定性,对螺旋槽小孔节流动静压气体轴承的动态特性进行了研究。建立不定常工况下的动态雷诺方程,采用偏导数积分法求解动态特性系数。研究有无螺旋槽、涡动比、转速、供气压力以及槽宽和槽深对轴承动态特性的影响规律。结果表明:螺旋槽可以显著提高轴承的动态特性,增加轴承的稳定性;随涡动比的增大,直接刚度系数增加,交叉刚度系数和各阻尼系数都减小;随转速的增大,各刚度系数增加,而各阻尼系数减小;随供气压力的增大,各刚度和阻尼系数均增加;随槽宽的增大,直接刚度系数和阻尼系数呈先增加后减小趋势,交叉刚度系数和阻尼系数变化较小;随槽深的增大,直接刚度系数增加,交叉刚度系数和各阻尼系数先增加后减小。  相似文献   

11.
李树森  杨非  陈群  陈宝 《润滑与密封》2023,48(10):23-29
基于仿生学原理和几何重构法,在动静压气体轴承上设计具有鸟翼轮廓仿生槽,以提高其承载能力及刚度。运用变分法求解雷诺方程并使用FLUENT软件,对鸟翼轮廓仿生槽动静压气体轴承进行静态特性仿真分析,研究轴颈转速、供气压力、偏心率、槽深以及槽偏角对轴承静态特性的影响。结果表明:在偏心率相同时,随着轴颈转速的增加,轴承承载能力和刚度随之增大,随着供气压力的增加,轴承承载能力逐渐增加、刚度逐渐减小;当气膜厚度一定时,随着槽深的增加,轴承承载能力和刚度呈现先增加后减小的趋势,随着槽偏角的增加,轴承承载能力和刚度呈现先增加后减小的趋势。  相似文献   

12.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

13.
熊忠汾 《润滑与密封》2023,48(12):62-67
为探究T型槽柱面气膜密封的稳态性能(气膜刚度、浮升力、泄漏率),使用计算流体力学(CFD)的方法,在转速为8 000 r/min的工况条件下,分析了密封系统结构参数的改变对系统稳态性能的影响。在不改变气膜厚度和气膜偏心的条件下,拟合了密封长度、T型槽槽数、T型槽深度与稳态性能之间的多元非线性方程,并通过对回归系数大小的比较确定了各因素的影响程度。结果表明:系统泄漏率受密封长度的大小影响最为显著,T型槽数量和槽深的改变对泄漏率的影响并不显著;随着密封长度的增加,气浮力几乎呈线性增长,而T型槽深度和T型槽的数量的改变对浮力的影响依次减小;影响气膜刚度最大因素的是T型槽深度,其次是T型槽的数量,密封长度的影响最小。  相似文献   

14.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

15.
实验研究是分析气体润滑轴承工作性能的重要手段,该文研制了一台风力驱动的圆锥型螺旋槽动压轴承实验台装置,使之可以测量圆锥型螺旋槽动压轴承的载荷、转速、轴向位移等各种性能参数.对于分析螺旋槽轴承的各性能参数对轴承的综合性能的影响,设计出最佳性能的螺旋槽轴承具有重要的借鉴和指导意义.  相似文献   

16.
以螺旋槽液膜密封为研究对象,求解考虑流量因子的平均雷诺方程,研究工况参数和结构参数对密封端面润滑状态转变规律的影响。结果表明:随着转速升高,液膜厚度与液膜承载系数逐渐增加,粗糙峰接触力不断减小至消失,实现摩擦副分离;低黏度介质对临界转速的影响显著;随着压差的增大,临界转速与闭合力均呈线性增大的趋势;临界转速随槽深、螺旋角增大而增大,随槽数、槽坝比增大而减小,结构参数中槽深对其影响最为显著,为提高润滑状态转变能力,建议取槽深3~7μm,螺旋角14°~18°,槽数16~24,槽坝比2/3~5/6。  相似文献   

17.
针对轴向槽气体轴承支承的转子非线性动力系统,研究了系统动力学行为的不平衡响应和分岔。采用矢量拟合近似求解的方法,建立了轴向槽气体轴承的有理函数模型,通过耦合转子运动模型,提出了一种轴向槽气体轴承-转子非线性系统动力学模型,在对其动力学行为求解过程中避免了对动态气膜力的反复求解,减少了计算时间。运用轴颈和圆盘中心的轨迹图、频谱图、Poincaré映射和分岔图分析了轴向槽气体轴承-转子系统的非线性不平衡响应和分岔行为。以转速为分岔参数研究了非线性系统从倍周期运动通向混沌的道路,以质量偏心为分岔参数研究了非线性系统的倍周期运动的倒分岔行为。数值结果表明轴向槽气体轴承-转子非线性系统存在复杂的动力学现象及分岔行为。  相似文献   

18.
为研究气体轴承的工作机理和静动态特性、设计了球面螺旋槽动静压气体轴承试验台,通过转子升降速试验分析转速-时间、碰磨电压-时间曲线,得到转子的起飞转速为15 762 r/min;通过轴承轨迹、频谱试验研究轴承-转子系统稳定运行到失稳过程的振动变化特性,进一步使用MATLAB,MYSQL数据库及数据处理系统对试验数据进行在线和离线处理,求得气体轴承刚度、阻尼等静动态特性与供气压力、转速的变化关系;通过电磁激振系统对转子进行加载试验,研究刚度、阻尼与激振频率变化关系。试验表明:试验台可测量气体轴承的转子转速、振动位移、轨迹、频谱、起飞转速及刚度、阻尼等静动态特性系数,研究气体轴承稳定运行及失稳过程静动态特性变化和运行参数对轴承静动态特性的影响。  相似文献   

19.
基于非线性振动原理,建立转子-轴承-干气密封系统轴向振动动力学模型,定性分析螺旋角及螺旋槽槽深对系统稳定性的影响,并与仅考虑干气密封系统的分析结果进行比较。在特定工况下,计算并通过多次拟合得到非线性气膜轴向刚度和阻尼,将其代入到双自由振动方程,得到一个三阶的非线性双自由度受迫振动微分方程。运用Runge-Kutta对该方程进行求解,分析螺旋角对密封环振动位移的影响。结果表明:静环的振动位移随着螺旋角(76.5°~80.0°)的增加先减小后增加,当螺旋角为78.50°时,振动数值最小,其最大振幅为7μm,最大振速为25μm/s;在考虑转子和轴承影响的干气密封系统中,螺旋角对密封环振动的影响更加显著;改变螺旋角可以调节和减小密封环的振幅,而改变螺旋槽槽深对静环的振动幅值几乎没有影响。研究表明,通过适当增加螺旋角度(0.5°~0.6°),可以使密封环的振动位移最小,从而保证干气密封系统的稳定运行。  相似文献   

20.
建立半球螺旋槽气体动静压轴承润滑分析数学模型;通过建立广义坐标系并进行保角变换简化数学模型,利用广义斜坐标变换划分求解域球面网格,提高数值计算精度;采用有限差分法对控制方程离散,建立控制方程的差分表达式,并采用VC++6.0编程计算三维微气膜稳态气膜厚度和压力分布;通过对微气膜周向和径向压力积分,求得轴承稳态的承载能力;研究动压和静压的耦合效应,分析螺旋槽结构参数、节流孔的数量对轴承承载力的影响规律。结果表明:随着小孔个数的增加,静压效应显著增加,轴承的承载力明显增加;随着螺旋角、槽深比、槽宽比的增大,轴承的承载力均先增大后减小,表明通过轴承优化设计参数可改善气体的润滑特性,提高承载力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号