首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
轮轨黏着特性试验研究   总被引:7,自引:2,他引:5  
利用JD-1轮轨模拟试验机研究了干态工况下蠕滑率、速度和轴重等参数对轮轨黏着系数的影响.结果表明:蠕滑率是影响轮轨黏着系数的主要因素;当蠕滑率为0时,黏着系数很小大约为0.02;当蠕滑率在0~1%时,轮轨黏着系数快速增加;蠕滑率在1%时黏着系数达到最大值,随后随蠕滑率的增加黏着系数出现下降趋势并逐渐趋于稳定,此时表现为轮轨宏观滑动.轮轨黏着系数随着速度增加而降低,随着轴重的增大呈现增加趋势.  相似文献   

2.
在轮轨滚动接触模拟试验机上采用均匀连续变化差的试验方法,进行不同工况和不同法向力条件下的轮轨黏着-蠕滑曲线试验,并利用两种数值拟合方法研究不同试验条件下的黏着-蠕滑曲线峰值点位置和初始斜率。结果表明:不同工况下的轮轨黏着-蠕滑曲线有较大差异,与干态相比,水、油工况下不仅导致黏着系数明显降低,还会导致峰值点发生明显左移;水、油工况下撒砂可有效提高黏着系数并使峰值点位置右移;干态下法向力增加对黏着系数和峰值点位置影响较小,但会导致曲线初始阶段斜率的下降;水、油工况下法向力的增加均会使黏着峰值点位置左移,并在水态下导致黏着系数的明显下降;撒砂后法向力对黏着系数及峰值点位置的影响较小,但曲线初始阶段斜率随法向力的增加呈下降趋势。通过试验和数值拟合获得轮轨黏着-蠕滑曲线特征参数的方法可为后续轮轨黏着研究提供参考。  相似文献   

3.
建立了基于显式有限元的三维高速轮轨瞬态滚动接触有限元模型,于时域内分析制动车轮通过长度1m以下的短低黏着区时的瞬态滚动接触行为。模型采用了面面接触算法求解轮轨间滚动接触,考虑了轮轨真实三维几何和材料非线性。着重分析了低黏着区附近的轮轨力、应力、粘滑分布和摩擦功分布等的瞬态变化,结果显示:车轮进入低黏着区时,轮轨接触斑尺寸基本不变,但蠕滑力、接触斑内黏着区面积和摩擦功均显著降低,蠕滑率上升;待离开低黏着区并重新进入正常黏着钢轨后,显著升高的蠕滑率会使得蠕滑力和摩擦功显著高于滚入低黏着区之前的水平;低黏着区越长,发生磨损的可能性和严重程度越大;牵引与制动工况相比,蠕滑力/率方向相反,但黏着区的影响规律基本相同。  相似文献   

4.
使用与滑动速度相关的摩擦因数替代库伦摩擦定律中的常系数,结合mixed Lagrangian/Eulerian方法建立轮轨滚动接触有限元模型,分析牵引力主导的蠕滑工况下的干燥状态的轮轨滚动接触特性。通过与摩擦因数取值为常数的轮轨滚动接触分析结果对比发现:与滑动速度相关的摩擦因数对轮轨滚动接触最大接触应力和接触斑面积影响不大,均在1%以内;但是对轮轨接触斑内最大Mises应力、最大纵向切应力、最大横向切应力和最大等效塑性应变影响较大,特别是对最大纵向切应力影响幅度近20%;更需要引起注意的是对轮轨滚动接触摩擦力矢量分布和切向塑性应变分布影响明显,这对轮轨滚动接触疲劳损伤分析非常重要。  相似文献   

5.
随着铁路的高速化和重载化,车辆运行环境日益恶化,破坏的程度也越严重。应用有限元分析软件ANSYS建立了轮轨摩擦接触时的热弹性平面应变有限元模型,分析了不同蠕滑率、摩擦因数以及轴重对轮轨表层温升和应力的影响情况。结果表明:高速列车滚动运行时,温升不高,但也产生了可观的热应力;车轮滚动过程中承受冷热交替的载荷,很容易产生破坏;随着轴重、摩擦因数和蠕滑率的增大轮轨的摩擦热效应越明显。摩擦生热的计算分析对于揭示热损伤机理有很大的指导意义。  相似文献   

6.
在车轮-钢轨高速滚动接触疲劳试验机上进行油介质下高速轮轨低黏着特性和增黏试验,研究油介质条件下不同速度、蠕滑率、轴质量以及撒砂对黏着系数的影响,最高试验线速度200 km/h。结果表明:黏着系数随蠕滑率的增加先增大、再微降随后趋于平稳,在蠕滑率3%左右达到最大;随着速度的增加,黏着系数呈快速下降趋势,如速度从50 km/h增加至200 km/h时,最大黏着系数从0.092下降至0.049;当轴质量由12 t增至16 t时,黏着系数仅略微增加了0.01;撒砂后,黏着系数约为未撒砂时的3倍左右,且依然随速度增加而降低;撒砂会使得试验后轮轨表面产生很多麻坑,从而增大了表面粗糙度,对增黏起到了一定作用,但增黏砂会对接触表面造成显著损伤,在极端条件下会促进滚动接触疲劳的萌生,威胁运行安全。  相似文献   

7.
通过对轮轨载荷和运行参数的三维膜厚状态图的分析,发现水介质表现出弹性等黏度特性。为此,应用Grubin简化弹性流体动力润滑模型,结合Greenwood Tripp微观固体接触理论,建立水介质存在时的高速轮轨黏着特性的三维简化数值模型。分析表明,该模型能很好地反映轮轨黏着情况,且求解时不需对雷诺方程反复迭代求解,计算过程简单。研究速度、粗糙度、接触压力以及边界摩擦因数对黏着系数的影响。结果表明,相比于其他因素,速度和粗糙度对黏着系数影响较大,随着速度的增加,黏着系数减小,随着粗糙度的增加,黏着系数先增大后达到一稳定值。  相似文献   

8.
通过对轨顶涂覆摩擦改进剂对轮轨黏着特性影响的分析,发现摩擦改进剂不仅会改变轨面摩擦因数,并且会改变Kalker权重系数,这与通常认为的摩擦改进剂只改变摩擦因数不同。考虑摩擦改进剂对摩擦因数和Kalker权重系数的影响,研究货车车辆在轨顶涂覆摩擦改进剂的轨道上运行时的动力学性能。利用SIMPACK软件包建立货车车辆模型,包括车体、摇枕、侧架、轴箱、轮对等部件,分析车辆在轨顶涂覆摩擦改进剂的轨道上直线和曲线运行时的平稳性和安全性。计算结果表明,摩擦改进剂可以明显改善车体的横向平稳性,而对车体的垂向平稳性影响较小;摩擦改进剂会使车辆的脱轨系数和轮重减载率小幅增加,但是均小于国标规定的安全限值,不会影响行车安全。  相似文献   

9.
为分析摩擦因数为常数时是否会出现曲线啸叫,并探讨摩擦因数对轮轨接触特性和曲线啸叫噪声强度的影响,建立详细的轮轨曲线啸叫噪声预测模型,包括轮轨弹性振动模型、时域相互作用模型和声辐射模型,并用CONTACT软件验证了相互作用模型的正确性。分析结果表明:摩擦因数为常数时,也会出现曲线啸叫。摩擦因数对曲线啸叫频率没有影响,轮对横移量为5 mm、横向蠕滑率为-0.01时,啸叫频率总是与车轮的0节圆3节径轴向模态频率相近;摩擦因数越大,曲线啸叫噪声强度越大;可以用横向力级峰值的个数判断是否会出现黏滑振荡,用接触区域内滑动区所占比例的变化程度表示黏滑振荡的激烈程度,用横向力级最大值或声功率级最大值对应频率预测曲线啸叫频率;提出两个临界摩擦因数:摩擦因数小于0.20时不会出现曲线啸叫,大于等于0.24时会出现啸叫,介于0.20和0.24之间时有可能出现曲线啸叫。  相似文献   

10.
采用理论分析、试验研究及数值仿真相结合的方法,揭示水介质对高速铁路车辆动力学性能的影响。在JD-1轮轨模拟试验机上进行干态、水介质和油介质条件下的黏着特性试验,对不同介质下的轮轨黏着系数进行分析,发现水介质下轮轨黏着系数较干态情况降低了50%~60%,油介质下甚至较低到0.02以下。根据我国现有某型动车组参数建立车辆系统动力学模型,在试验获得的摩擦因数范围内,分析车辆通过轨道不平顺激励时的运动行为。结果表明,当轮轨受较大横向冲击时,较小的黏着系数可以有效降低轮对横移量,减小轮对振动加速度。装有新车轮及磨耗后车轮的车辆在我国高速线路实测轨道不平顺激励下运行,水介质可以有效降低较大横向冲击造成的轮对横移量及横向加速度峰值,对装有新旧车轮的车辆的临界速度均有明显的提高。  相似文献   

11.
为研究高速列车曲线通过时的轮轨接触几何关系、蠕滑性能及磨耗情况,基于我国某型高速动车组,利用有限元和多体动力学方法,考虑轮对旋转运动,建立高速列车车辆系统弹性模型,并通过数值仿真,得到高速列车曲线通过时,不同曲线参数影响下,轮轨接触点横向位置、轮轨蠕滑力以及轮轨磨耗指数等的变化规律。结果表明,相对于刚性模型,利用车辆系统弹性模型仿真能够更加真实反映轮对旋转运动时的轮轨接触状态,也更符合高速列车实际曲线通过情况。高速列车曲线通过速度和线路横向不平顺激扰幅值增大均会显著加剧轮对横向位移、轮轨接触点横向位置、轮轨横向蠕滑力等轮轨系统横向相互作用,且会加大轮轨磨耗;曲线半径和超高增大对于曲线轨道外侧轮轨磨耗影响较大,但对于轮轨系统横向相互作用影响较小。将通过速度为350km/h的7 000 m半径曲线超高设置为170 mm,可有效平衡内、外侧轮轨磨耗,列车降速通过则会加剧曲线内侧轮轨磨耗。  相似文献   

12.
曲线钢轨初始波磨形成的机理分析   总被引:3,自引:0,他引:3  
利用数值方法分析钢轨离散支撑引发曲线钢轨初始波浪形磨损形成的机理.建立车辆轨道耦合动力学模型、轮轨滚动接触理论模型和轮轨界面材料摩擦磨损模型为一体的钢轨磨耗型波浪形磨损计算模型.考虑半个车辆模型和有限计算长度的轨道模型,利用Hertz非线性接触弹簧和沈志云-Hydrick-Elkins非线性蠕滑理论耦合车辆和轨道的计算模型来计算轮轨的法向载荷和切向载荷.通过车辆过曲线动力学分析,确定轮轨的瞬时接触位置、法向载荷、蠕滑率等.根据修改的Kalker三维滚动接触理论计算轮轨滚动接触力学行为,再利用轮轨材料摩擦磨损模型计算钢轨的磨损量.对曲线两端的缓和曲线和圆曲线的初始波磨形成过程作详细分析,并对波动频率也作了调查.数值结果显示,同一个转向架4个车轮引起的磨损波长和波深是不同的;不同曲线位置初始波磨的波深和波长也有区别;波磨的频率和轮轨接触振动密切相关;波磨的频率不仅包含轨枕的通过频率,也包含轨道被激发的更高振动频率.  相似文献   

13.
轮轨磨耗问题影响列车运行的平稳及安全。为研究钢轨磨耗规律,基于轮轨接触的有限元计算模型,分析不同牵引或制动力及横移量等对轮轨接触的影响规律,提出有限元摩擦功计算方法,对地铁钢轨进行磨耗量及磨耗后型面预测,并探究车轮的通过次数对钢轨磨耗的影响。研究结果表明,根据功的物理意义,接触斑节点的摩擦功与摩擦力及相对位移直接相关;牵引或制动力及不同横移量作用下,轮轨接触斑的摩擦功均呈中部小、后部及两侧大的分布规律,这与接触斑上黏着区与蠕滑区的分布规律对应;在接触区间内,钢轨的累积磨耗量沿横向呈中间高两侧低的分布规律,磨耗深度随车轮通过次数的增加近似呈正比增加;运用摩擦功计算方法预测的钢轨磨耗量与实测结果基本相符,与标准型面数据的预测结果相比,采用磨耗后型面的有限元计算结果预测的钢轨累积磨耗量,与实测型面更加接近。  相似文献   

14.
牵引/制动载荷和轮轨黏着条件对轮轨系统动态相互作用影响显著,尤其是轮轨切向作用。基于车辆-轨道耦合动力学理论,建立地铁车辆-板式轨道空间耦合动力学模型;由于轮轨接触斑形状以及接触应力分布实际上呈明显的非赫兹特性,因此建立考虑轮对摇头角的轮轨非赫兹法向接触模型以及相应的轮轨非赫兹蠕滑模型,并用于耦合动力学的轮轨动态相互作用计算中。基于所建立的动力学仿真模型,系统分析牵引/制动载荷以及复杂的轮轨界面黏着条件对轮轨系统动态相互作用的影响。结果表明,牵引/制动载荷和轮轨黏着条件对轮轨切向接触应力及黏-滑区域分布影响显著,在干燥接触条件下,随着牵引/制动载荷的增大轮轨切向应力幅值增大,黏着区域减小,而当牵引/制动载荷较高且轮轨黏着水平较低时,接触斑内表现为全滑动状态。研究结果可为车轮/钢轨异常磨损和型面优化设计进一步研究提供理论基础。  相似文献   

15.
轮轨摩擦因数的变化影响列车运行时的轮轨黏着特性,轮轨间的最大静摩擦因数可以界定轮轨接触区的黏着状态,轮轨黏着对于机车实现牵引制动具有重要意义。针对水、油、砂等"第三介质"对轮轨最大静摩擦因数的影响,搭建轮轨接触试验台进行轮轨接触试验与轮轨摩擦接触试验。对试验结果对比分析表明轮轨接触试验的轮轨接触斑与有限元仿真的接触斑形状及面积相同。与干燥清洁状态下的轮轨最大静摩擦因数相比,当轮轨间单独存在水或油介质时会降低该系数值,且单独存在油介质时该系数值最小;当轮轨间同时存在水、砂介质时,该系数值增大;当油、砂同时存在时,最大静摩擦因数略大于油介质工况,但依旧小于干燥工况下的系数值。撒砂可以增加轮轨最大静摩擦因数,河砂具有更好的增黏效果但会对轮轨表面造成更严重擦伤,建议使用石英砂作为轮轨增黏介质。  相似文献   

16.
为研究驱动作用下直线电机地铁车辆和旋转电机地铁车辆的轮轨系统动力学响应特性,利用KALKER线性蠕滑理论分析比较电机驱动下两种地铁车辆曲线通过时的轮对导向能力,分别建立直线电机地铁车辆-轨道三维耦合动力学模型和传统旋转电机地铁车辆-轨道三维耦合动力学模型,对比分析驱动作用和曲线半径对两种地铁车辆轮轨动态相互作用的影响。研究结果表明:驱动工况下,不同于传统旋转电机地铁车辆,直线电机地铁车辆的轮轨蠕滑特性和系统动态响应几乎不受牵引载荷的影响,其轮轨蠕滑力不受到轮轨黏着的限制。曲线通过时直线电机地铁车辆导向轮对的导向能力优于传统旋转电机地铁车辆。  相似文献   

17.
车轮滚动接触疲劳与磨耗耦合关系数值模拟   总被引:2,自引:0,他引:2  
滚动接触疲劳和磨耗是车轮失效的主要方式。通过三维弹性体非赫兹滚动接触理论得到接触斑内的法向、切向应力和材料上不同深度处的最大切应力分布,以CL60钢和贝氏体车轮钢为例,基于"layer"滚动接触疲劳失效模型和Zobory车轮磨耗模型,分析LM型车轮踏面和75 kg.m–1钢轨型面匹配时轮轨接触条件和车轮材质对车轮滚动接触疲劳和磨耗竞争关系的影响。计算结果表明,摩擦因数为0.3时,CL60钢在小蠕滑条件下会发生滚动接触疲劳损伤,在大蠕滑条件下只有轴重大于30 t时才会出现滚动接触疲劳损伤,而贝氏体车轮钢只有在大蠕滑条件且轴重为30 t时,载荷循环次数小于1×105的情况下才会出现滚动接触疲劳损伤;摩擦因数为0.6时,CL60钢和贝氏体车轮钢在各种工况下的滚动接触疲劳损伤速度都小于相同条件下的磨耗速度。  相似文献   

18.
车轮全滑动轮轨摩擦温升三维有限元分析   总被引:3,自引:0,他引:3  
基于有限元法和非稳态导热问题微分方程,建立轮轨摩擦温升三维数值分析模型.分析轮载、相对滑动速度和摩擦因数对轮轨接触区附近摩擦温度场的影响.模型中考虑了轮轨与环境间的对流换热和轮轨接触界面的相互导热过程.分析结果表明,轮载、相对滑动速度和摩擦因数对轮轨摩擦接触温升及其热影响层深度都有明显影响.轮重不仅影响轮轨表面最高摩擦温升,而且影响热影响区域的大小;相对滑动速度变大,热影响层深度和宽度分别变浅和变宽;摩擦因数越大,热影响区越大.  相似文献   

19.
列车向着高速与重载方向迅速发展,显著加剧了轮轨接触界面间的损伤。通过在轮轨接触界面进行摩擦管理能够有效地降低轮轨之间的磨损、显著提高列车的运行安全性以及降低运营成本。对轮轨接触界面摩擦管理研究现状进行综述,并介绍轮轨界面摩擦控制对轮轨作用力、黏着、磨耗、滚动接触疲劳以及振动与噪声影响的研究进展;展望了轮轨接触界面摩擦管理未来研究方向,即应针对不同应用环境和接触部位,研发合理的摩擦控制材料,以克服摩擦管理过程中对轮轨损伤及使用局限性等问题;应探究车轮踏面/轨顶面和轮缘/轨距面摩擦控制方式,严格控制摩擦材料喷涂量使两接触面不相互干扰,优化改进轮轨接触界面摩擦管理的最佳应用参数;应研发环境友好型的轮缘/轨距面润滑剂与车轮踏面/轨顶面摩擦控制剂,稳定调控轮轨接触界面的黏着特性。  相似文献   

20.
高速机车单轮对牵引力矩数值分析   总被引:2,自引:0,他引:2  
用数值分析方法计算了高速机车轮对和轨道之间的粘着力,确定了轮对的牵引力矩随机车的运行速度、轮对相对轨道的位置和轮轨之间滑差的变化情况。数值分析中改进了Kalker三维弹性体滚动接触理论模型,并考虑到接触斑质点对之间相对滑动速度对摩擦因数的影响。数值结果对高速机车轮对粘滑控制提供了重要数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号