首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
国内某地铁线路运营后曲线轨道出现了短波长钢轨波磨现象,通过力锤敲击法对不同扣件轨道动态特性进行了测试。利用ABAQUS建立了轮轨三维实体有限元模型,分析了轮轨耦合模态特性以及白噪声激励时轨道频响特性。结合试验和仿真结果,分析了轮轨结构动态特性与短波长钢轨波磨之间的相关性。研究结果表明:普通扣件和减振扣件轨道钢轨波磨主波长分别为30~63 mm和40~50 mm;白噪声激励下,两种轨道分别在450~920 Hz和570~720 Hz范围内的敏感共振频率与列车通过钢轨波磨频率(454~954 Hz和572~715 Hz)相吻合;线路轨道短波长波磨的产生主要与轨道结构高频固有特性相关,轨道短波长波磨通过频率与轮轨耦合模态频率相近,其模态振型表现为轮对弯曲扭转的同时,伴随钢轨相对轨道板的垂向弯曲振动,轮轨耦合高频模态特征加剧短波长波磨的发展。  相似文献   

2.
地铁运营中常会出现钢轨波磨,尤其在剪切型减振器地段较为严重。为揭示钢轨波磨对结构振动的影响,选取地铁直线和曲线部分普通扣件和剪切型减振器典型区段进行了钢轨波磨的测量,并对轨道、隧道、地面等结构的振动加速度进行了现场测试。从时域、频域两个方面对比了结构的振动量值和振动传递特性,分析了剪切型减振器钢轨波磨对加速度振级及其减振效果的影响。结果表明:波磨会增大轮轨间动态冲击,使钢轨-道床-隧道-地面的振动显著增加;减振器区钢轨波磨会导致轨下结构振动大于普通扣件区,其减振效果难以实现;减振器区钢轨波磨比普通扣件区严重,曲线半径小、运量较大、速度较快的线路尤为突出,地铁轨道选型应考虑波磨的不利影响。  相似文献   

3.
基于车辆轨道耦合动力学模型和钢轨材料摩擦磨损计算模型,分析了不同轨道结构参数和车辆运营速度对地铁直线轨道钢轨波磨发生和发展的影响。结果发现,对于不同的变量参数,轮轨接触斑内摩擦功率随时间的变化都具有一定的波动性,且摩擦功率整体波动幅度较为均匀。同时,摩擦功率1/3倍频程图分析结果表明,摩擦功率的特征频率主要集中在中低频范围。在主要特征频率处,扣件纵向刚度、纵向阻尼、横向阻尼和垂向阻尼对钢轨波磨的影响较小,扣件横向刚度、垂向刚度、扣件间距、轮轨摩擦因数和车辆运行速度对钢轨波磨的影响较大。扣件垂向刚度和扣件间距的变化会导致摩擦功率的特征频率发生偏移,主要特征频率从80 Hz偏移至100 Hz,从而导致对应波长的钢轨波磨,说明扣件垂向刚度和扣件间距对特定频率处钢轨波磨的产生和发展具有重要的影响。其余变量的增大并未导致摩擦功率的特征频率发生改变,表明其余变量不影响钢轨波磨的特征频率。  相似文献   

4.
基于轮轨摩擦自激振动诱发钢轨波磨的观点,研究地铁线路先锋扣件支撑小半径曲线轨道扣件结构参数对轮轨摩擦自激振动的影响。根据现场调研建立车辆-轨道的多体动力学模型,验证列车通过地铁线路先锋扣件支撑小半径曲线轨道时轮轨间的蠕滑力饱和情况;基于动力学模型建立相应的导向轮对-钢轨有限元模型,利用复特征值法分析轮轨系统的摩擦自激振动特性。预测得到的轮轨系统不稳定振动频率与诱导钢轨波磨的振动频率相符,验证了建立的导向轮对-钢轨有限元模型的正确性。利用控制变量法研究扣件结构参数对轮轨系统摩擦自激振动的影响规律,发现轮轨摩擦自激振动发生的可能性随着扣件垂向刚度的增大而轻微增加,随着垂向阻尼的增大而明显降低;随着扣件横向刚度和横向阻尼的增大,轮轨摩擦自激振动发生的可能性降低。因此,增大先锋扣件垂向阻尼、横向刚度和横向阻尼,有助于抑制地铁线路先锋扣件支撑曲线轨道的波磨。  相似文献   

5.
为研究地铁钢轨波磨的产生机理和发展特性,通过建立车辆-轨道空间耦合模型和钢轨波磨评价模型,从频域和时域的角度分析波磨产生机理,并运用波磨增长率对科隆蛋扣件轨道钢轨波磨的产生机理和发展特性进行研究。基于频域的分析,对轨道结构模型进行模态分析和频响分析,发现存在与实测波磨通过频率接近的轨道结构固有频率,说明该频率所对应的振型更容易被激发出来,促使轨道结构发生共振现象,形成相应频率的波磨。基于时域的分析,运用车辆-轨道耦合模型,计算钢轨垂向振动加速度、钢轨垂向位移的时程曲线并进行频域变换,发现存在与实测波磨通过频率接近的特征频率,说明轨道结构相应频率下的振动是促进波磨形成的重要原因。车速的改变对波磨增长率的特征频率没有影响,体现了波磨的固定频率特性。随着列车运行次数的增加,特征频率对应波长的波磨逐渐形成并不断发展;波磨的波长范围和发展速度随着列车速度的增加而逐渐增大。  相似文献   

6.
基于轮轨系统摩擦自激振动的观点,研究山地地铁线路长大坡道圆曲线段处出现的典型钢轨波磨现象。利用SIMPACK建立山地地铁车辆-轨道动力学模型,验证了列车通过长大坡道圆曲线段外侧轮轨间的蠕滑力处于饱和状态;建立相应区段上由导向轮对-钢轨-道床所组成的轮轨系统有限元模型,采用复特征值分析法从频域角度研究轮轨系统的稳定性;采用控制变量法研究浮置板结构中隔振器的垂向刚度和垂向阻尼、扣件的垂向刚度和垂向阻尼对轮轨系统摩擦自激振动的影响规律。结果表明:在长大坡道圆曲线段上,外侧轮轨间饱和蠕滑力引起的轮轨摩擦自激振动是导致该区段外轨处钢轨波磨产生的主要原因,诱导频率为459.63 Hz。参数化分析表明,轮轨系统摩擦自激振动随隔振器的垂向阻尼和垂向刚度的增大呈增大趋势,随扣件的垂向阻尼的增大呈降低趋势,而随扣件垂向刚度的增加呈先减小后增大的趋势;当扣件的垂向支撑刚度为40 MN/m时,钢轨波磨最不容易发生。  相似文献   

7.
基于轮轨垂向动力学、轮轨滚动接触理论以及磨耗理论建立高速铁路无砟轨道钢轨波磨发展的理论计算模型,并发展出相应的数值仿真方法。其中轮轨垂向动力学模型包含高速车辆和高速铁路无砟轨道模型;采用Hertz接触理论和Carter二维轮轨接触理论计算轮轨切向力;利用摩擦功磨耗模型计算钢轨表面的磨耗。利用数值仿真再现了高速铁路钢轨波磨的演化过程,以此来研究车辆一系悬挂刚度以及悬挂阻尼,轨道扣件刚度、扣件阻尼以及钢轨硬度对高速铁路钢轨波磨发展的影响规律。结果表明:文中模拟所得的钢轨波磨波长特征与高速铁路上的波磨调查结果相符;较小的车辆一系悬挂刚度,适当的一系悬挂阻尼和扣件刚度,以及较大的扣件阻尼和钢轨硬度有利于抑制高速铁路钢轨波磨的发展。  相似文献   

8.
蔡学军 《机械》2022,(12):32-38
为分析小半径曲线上P2共振型波磨激励下轮轨垂向动力学响应,于时域内建立车辆-轨道耦合动力学模型。在69 Hz的P2共振型波磨激励下,将车辆通过速度、波磨波长、波深等参数的变化考虑在内,模拟线路中不同工况对轮轨垂向动力学响应的影响。结果表明:在波深为0.2 mm时,随着车辆运行速度和波磨波长变化,轮对垂向动力学响应均在69 Hz达到最大值,说明与其他波磨通过频率相比,P2共振型波磨对轮对垂向响应影响最大;与无钢轨波磨工况相比,钢轨波磨工况的轮轨垂向动力响应均明显提高,且响应频率与波磨通过频率吻合;随着波磨波深的增加,轮轨间动力学响应加剧,这与现场实际情况和以往研究结论相符。  相似文献   

9.
基于轨道振动理论的梯形轨枕轨道钢轨波磨研究*   总被引:6,自引:0,他引:6  
研究半径为350 m梯形轨枕曲线轨道上波磨的成因。借助于现场观察和测量,获得波磨的特征参数。调查区段车辆运行速度在35 km/h左右,该波磨的主波长为60~100 mm,其通过频率为110~180 Hz;次波长为30 mm,其通过频率为324 Hz。结合轨道结构振动理论对波磨成因进行预测分析。根据结构特征建立梯形轨枕轨道三维有限元实体模型,利用此模型分析轨道结构的固有特性与波磨通过频率的内在联系,对波磨的成因做出初步解释,利用该模型计算分析白噪声激励下轨道结构的频响特性,进一步揭示波磨形成的机理。将理论计算结果与现场测试数据比较,两者相吻合。研究表明,车辆通过梯形轨枕轨道时,容易引起钢轨相对于轨枕的垂横向弯曲振动,从而加剧轮轨粘滑振动,加速了该轨道曲线段波磨的形成和发展。  相似文献   

10.
山地城市地铁平纵曲线交叠区段钢轨波磨频发,钢轨打磨是一种常用的抑制钢轨波磨发展的手段,而确定钢轨波磨的打磨限值是关键。根据现场调研构建山地城市地铁平纵曲线交叠区段的车辆-轨道系统动力学模型,采用动力学分析研究波磨特性对轮轨动态响应的影响规律,从车辆运行安全性的角度提出钢轨波磨的安全限值;构建波长为50 mm典型波磨区段的轮轨系统有限元模型,采用瞬时动态分析研究轮轨摩擦耦合振动特性,从钢轨波磨发展趋势的角度提出钢轨波磨的打磨限值。动力学分析结果表明,山地城市地铁平纵曲线交叠区段钢轨波磨波长为30、40、50、60、70 mm时的波深安全限值分别为0.03、0.04、0.05、0.08、0.15 mm。轮轨摩擦耦合振动分析结果表明,轮轨系统摩擦耦合振动随着波深的增大而增大,控制波深打磨限值在0.02 mm以下能有效抑制轮轨摩擦耦合振动并延缓波磨发展。  相似文献   

11.
DTVI_2扣件是目前北京地铁最常用的一种扣件型式,并在长期的使用中保持了良好的稳定性。然而,在新运营线路上采用DTVI_2扣件的区段却出现了钢轨波磨问题。针对该问题,提出在钢轨上安装调频式钢轨阻尼器(Tuned tail damper,TRD)的治理措施,并在北京地铁6号线某区段进行了现场试验研究。对DTVI_2扣件轨道安装TRD区段与未安装TRD区段进行对比试验,测试了钢轨的频响函数和振动衰减率,并对钢轨走形带粗糙度进行了为期456天的跟踪监测。试验结果表明:安装TRD可以改变钢轨频率响应动力特性,消除竖向209 Hz及横向845 Hz等多处共振峰,竖向与横向一阶pinned-pinned共振响应幅值分别下降23%与25%;安装TRD显著提高了轨道系统200~5 000 Hz频段阻尼,钢轨竖向振动衰减率最大提升约16倍(315 Hz),钢轨横向振动衰减率最大提升约8倍(160 Hz);DTVI_2扣件钢轨波磨典型波长为25~80 mm,跟踪监测结束时未安装TRD区段钢轨表面粗糙度级最大超出ISO3095限值达17 d B左右(50 mm),而安装TRD区段无显著钢轨波磨,安装TRD可以有效抑制DTVI_2扣件钢轨波磨的发展。  相似文献   

12.
为研究地铁出站口附近直线起动区段钢轨波磨形成原因,利用有限元软件ABAQUS建立了三维实体轮对-轨道瞬态滚动接触模型,并结合现场实测,从时域和频域上对波磨现象进行了分析。研究结果表明:车辆起动过程中,车轮与钢轨表面接触带会产生准周期特性的滑移区域,且滑移区域中心之间的距离与实测波磨的波长范围接近,从而验证了模型的合理性和有效性;轮轨系统的不稳定摩擦自激振动是导致实测区段钢轨波磨产生的根本原因,正是由于轮轨蠕滑力“饱和-非饱和”的周期特性,最终促使了波磨的形成;钢轨和车轮的垂向振动加速度等级在160~230 Hz频率范围内均出现了峰值区域,且频率范围与实测波磨的特征频率范围174~198 Hz接近,这进一步说明钢轨波磨是轮轨系统摩擦自激振动引起的车轮-钢轨共振所产生;在忽略初始不平顺的前提下,钢轨表面的波磨会随着车轮运行次数的增加呈现线性增长趋势,因此适当地采取钢轨打磨以及轨面润滑等措施尤为重要。  相似文献   

13.
现有地铁线路钢轨波磨80%以上出现在小半径曲线轨道内股钢轨上,而大半径曲线和小半径曲线外股钢轨几乎没有出现钢轨波磨。为了探索这一现象深层次的原因,基于摩擦自激振动导致钢轨波磨的机制,分别建立Simpack车辆多体动力学曲线通过模型和轮轨系统ABAQUS有限元摩擦自激振动模型,采用复特征值分析法对不同曲线半径轨道的钢轨波磨进行研究。结果表明:随着曲线轨道半径增大,摩擦自激振动产生的概率减小,即钢轨波磨发生概率下降,且钢轨波磨主要出现在低轨上而高轨较少;随着曲线半径增大,在曲线半径400~450 m范围内,轮轨蠕滑力逐渐由饱和状态变为不饱和状态;蠕滑力饱和时轮轨系统有可能出现摩擦自激振动,即产生钢轨波磨,当蠕滑力不饱和时,轮轨系统就不会出现摩擦自激振动,因而大概率不会发生钢轨波磨。  相似文献   

14.
普通短轨枕轨道结构钢轨波磨初步研究   总被引:3,自引:0,他引:3  
研究某地铁普通短轨枕轨道结构小半径曲线上125~160 mm波长波磨形成机理。通过现场调查和试验测试,并结合轨道结构动力学理论对波磨形成机理进行预测分析;建立该轨道结构的三维有限元模型,利用该模型分析轨道结构的模态振型以及频响特性,并总结出该轨道结构的动态特性与钢轨波磨的关系。其中,频响分析时探讨簧下质量对轨道结构响应以及波磨成因的影响。数值计算结果与现场测试结果相吻合。研究发现该轨道结构60~80 Hz的振动是125~160 mm波长波磨形成的根本原因。由于该结构的轨枕直接嵌入轨道板中形成整体,轨道结构隔振性能差,车辆通过该轨道结构时极易发生钢轨和道床板一起相对地基的垂向弯曲振动,从而导致了125~160 mm波长波磨的形成。  相似文献   

15.
地铁车辆在正常运营过程中发生轴箱吊耳断裂问题,采用有限元分析方法和线路试验开展断裂机理研究,并对吊耳振动水平进行评估。通过分析振动激扰源和结构响应特性,确定断裂原因和提出解决方案并进行试验验证。仿真表明吊耳第一阶固有模态为横向弯曲,主频约260 Hz;吊耳根部内圆弧处为强度薄弱点,与现场裂纹位置吻合。试验表明轴箱体、吊耳振动水平与线路区间相关,钢轨波磨是导致车辆振动水平激增的主因,波长61.5 mm;钢轨波磨波长、车辆常用速度共同作用导致波磨频率在吊耳固有模态频带内,导致结构共振从而引发疲劳破坏,提出钢轨打磨、优化吊耳结构设计和使用管理条件等解决措施。开展钢轨打磨效果验证性试验,表明钢轨打磨可显著降低吊耳加速度水平,使结构应力降低50%以上,但部分线路仍存在轻微波磨,可根据车辆振动数据特征对波磨路段进行定位从而再次进行打磨。  相似文献   

16.
针对地铁线路直缓点附近区间上的一种特殊钢轨波磨现象,根据现场条件建立车辆-轨道系统数值模型,并对模型的有效性进行了验证;运用数值模型分析上述线路区间的轮轨界面黏滑特性,解释了该类钢轨波磨的形成原因;结合轮轨系统动力响应特性,分析促使钢轨波磨生成和发展的波长固定属性的成立条件。结果表明:在线路直缓点附近区间,导向轮对和从动轮对内外侧轮轨界面均会发生横向黏滑运动,而轮轨界面发生纵向黏滑运动的概率较低,且黏滑运动的交替发生,导致了钢轨表面初始波磨的形成;当导向轮对和从动轮对内外侧车轮经过线路直缓点时,外侧轮轨接触表现为轮缘-轨距角接触,且接触形式的改变造成了轮轨系统法向力的波动,说明直缓点的存在赋予了轮轨横向黏滑运动的相位同步特征,能够保持钢轨波磨的波长固定属性,因此,钢轨波磨最终形成并不断发展,而且内轨表现为轨面波磨,外轨表现为侧面波磨,这与实测区间波磨现象一致。  相似文献   

17.
钢轨波磨问题在地铁日常运营中日益突出,这不仅会损伤钢轨,也会增大列车通过时的车内噪声,从而严重影响列车的乘坐舒适性。针对这一问题,以某地铁实际运营线路为研究对象,测试了某区段的钢轨波磨以及列车通过时的车内噪声,并对钢轨进行打磨后再次进行钢轨及噪声测试。通过对测试结果进行对比分析发现,该区段钢轨主波长为25mm及40mm的波磨较为严重,导致列车以65km/h通过时车内噪声在440Hz、710Hz附近幅值很大,列车通过钢轨波磨区段时司机室及客室内噪声A计权声压级明显增加,最大增幅可达20dB(A);打磨后钢轨表面波磨得到明显改善,400~800Hz范围内的轮轨噪声显著降低,司机室及客室噪声A计权声压级最大值显著降低,比打磨前分别降低了10.2dB(A)和11.3dB(A)。  相似文献   

18.
北京地铁近年来投入运营的几条线路中,剪切型减振器扣件区段大量出现钢轨波磨现象,经过大量的调查和测试分析发现:剪切型减振器扣件轨道系统在200~400 Hz频段内的轮轨共振效应是引发钢轨波磨的主要原因。为了抑制波磨发展,在剪切型减振器扣件内增设橡胶垫块,并在北京地铁10号线选择两个试验段进行了现场试验,对两个试验段的钢轨走形带粗糙度进行了为期6个月的跟踪测试。测试结果表明:在剪切型减振器扣件内增设橡胶垫块有效地控制了钢轨波磨的发展,并在一定程度上起到了消减钢轨波磨的作用。  相似文献   

19.
轮轨摩擦自激振动引起科隆蛋轨枕钢轨波磨的理论研究   总被引:1,自引:0,他引:1  
基于轮轨系统间摩擦力可能引起摩擦耦合自激振动从而使钢轨发生波磨的观点,假设轮轨蠕滑力饱和且等于法向力与摩擦因数的乘积,建立车辆通过直线轨道时由4个轮对和2根钢轨组成的轮轨系统有限元摩擦自激振动模型。应用有限元软件ABAQUS分析该模型的自激振动发生趋势,预测钢轨可能发生波磨的频率。计算结果显示,钢轮在频率为241.56、252.65、253.14 Hz时可能发生波磨。仿真结果与现场测试结果的对比表明,该模型能够有效预测地铁科隆蛋轨枕直线线路上钢轨出现的波磨。  相似文献   

20.
针对地铁普通扣件和先锋扣件不同的结构和支撑特性,分别建立两种扣件系统的动力学模型,基于车辆-轨道耦合动力学理论,对比分析了两种扣件系统的轮轨动力特性及其差异。结果表明:相比于普通扣件,先锋扣件由于具有较低的垂向刚度,钢轨垂直位移较大;同时,安装于轨腰的橡胶支撑作用区离钢轨质心较近,形成的扭转刚度和阻尼较小,钢轨扭转位移较大。通过钢轨焊接接头不平顺时,与普通扣件轨道相比,先锋扣件轨道轮轨垂向力波动衰减要快,先锋扣件轨道钢轨在低频15~30Hz处振动略有增加,但在40~70 Hz范围大幅衰减,这有利于车辆轨道系统的减振。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号