首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The definition of wireless mesh networks (WMNs) has been used in the literature to connote and epitomize the ideal, ubiquitous, pervasive, and autonomic networking technology. An increasing interest has been emerging on the development of 802.11‐based WMN testbeds to test the new ideas and approaches more realistically as opposed to relying solely on simulations. Although the developed testbeds have provided several insights to researchers for furthering the technology, there are still several issues that need to be addressed, particularly, with the approval of new standards, such as IEEE 802.11s, IEEE 802.11n, and IEEE 802.16, and upcoming protocols, such as IEEE 802.11ac, 802.11ad, 802.11ah, and 802.11af TV White Space efforts. In this paper, our goal is to provide a taxonomy and insightful guidelines for the creation of 802.11‐based WMN testbeds as well as to identify several features that future WMN testbeds should possess. Utilizing these features, we evaluate the existing WMN testbeds. Finally, in addition to the existing WMN testbed experiments conducted at several layers of the protocol stack, we provide a list of open future research issues that can benefit from experiments on WMN testbeds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates differentiated services in wireless packet networks using a fully distributed approach that supports service differentiation, radio monitoring, and admission control. While our proposal is generally applicable to distributed wireless access schemes, we design, implement, and evaluate our framework within the context of existing wireless technology. Service differentiation is based on the IEEE 802.11 distributed coordination function (DCF) originally designed to support best-effort data services. We analyze the delay experienced by a mobile host implementing the IEEE 802.11 DCF and derive a closed-form formula. We then extend the DCF to provide service differentiation for delay-sensitive and best-effort traffic based on the results from the analysis. Two distributed estimation algorithms are proposed. These algorithms are evaluated using simulation, analysis, and experimentation. A virtual MAC (VMAC) algorithm passively monitors the radio channel and estimates locally achievable service levels. The VMAC estimates key MAC level statistics related to service quality such as delay, delay variation, packet collision, and packet loss. We show the efficiency of the VMAC algorithm through simulation and consider significantly overlapping cells and highly bursty traffic mixes. In addition, we implement and evaluate the VMAC in an experimental differentiated services wireless testbed. A virtual source (VS) algorithm utilizes the VMAC to estimate application-level service quality. The VS allows application parameters to be tuned in response to dynamic channel conditions based on “virtual delay curves.” We demonstrate through simulation that when these distributed victual algorithms are applied to the admission control of the radio channel then a globally stable state can be maintained without the need for complex centralized radio resource management  相似文献   

3.
Wireless mesh networks (WMNs) extend the limited transmission coverage of wireless LANs by enabling users to connect to the Internet via a multi-hop relay service provided by wireless mesh routers. In such networks the quality of experience (QoE) depends on both the user location relative to the Internet gateway and the traffic load. Various channel access or queue management schemes have been proposed for achieving throughput fairness among WMN users. However, delay and bandwidth utilization efficiency of such schemes may be unacceptable for real-time applications. Accordingly, the present study proposes a proportional bandwidth allocation scheme with a delay constraint consideration for enhancing the QoE of users of WMNs based on the IEEE 802.11e standard. An analytical model of the proposed scheme is provided. Moreover, the performance of the proposed scheme is systematically compared with that of existing bandwidth allocation methods. The simulation results show that the proposed scheme outperforms previously proposed schemes in terms of both an improved throughput fairness among the WMN users and a smaller end-to-end transmission delay.  相似文献   

4.
5.
To implement WMN, IEEE 802.11s has been developed. The routing protocol for selecting a path between two mesh stations in IEEE 802.11s is hybrid wireless mesh protocol (HWMP). But mobility of external stations has not been considered in IEEE 802.11s. For handling movement of clients, many mobility management schemes have been proposed. Some of such schemes are: ANT, Mesh Mobility Management (M\(^{3})\), Infrastructure Mesh (iMesh), SMesh, MEsh networks with MObility management (MEMO), Wireless mesh Mobility Management (WMM), Static Anchor Scheme, Dynamic Anchor Scheme, LMMesh, Session-to-Mobility-Ratio based Scheme and Forward Pointer-Based Mobility Management Scheme (FPBR). But none of the schemes except FPBR have been integrated with IEEE 802.11s for providing mobility support to the external stations. FPBR has been proposed to enhance IEEE 802.11s for providing mobility support to external stations, but it can support internet traffic only. In WMN both internet and intranet traffic to and from the external station is important. In this paper, an improved version of FPBR named Enhanced FPBR (EFPBR) Scheme has been introduced to handle both internet and intranet traffic. Both EFPBR and HWMP have been numerically analyzed. HWMP and EFPBR schemes are simulated and the performances are compared. From the performance comparison, it can be observed that EFPBR performs better than that of IEEE 802.11s concerning throughput, end-to-end delay, routing overhead and average handoff cost. The number of route management packets transferred per handoff measured from numerical analysis and simulation has also been compared.  相似文献   

6.
无线Mesh网络与IEEE802系列标准   总被引:1,自引:0,他引:1  
无线宽带接入系统发展迅速,但带宽容量低、覆盖范围小等缺点限制了它的进一步发展。作为“最后一公里”宽带无线接入非常重要的技术之一。无线Mesh网络(WMN)可以和多种无线网络系统,如无线局域网(WLAN)、无线个域网(WPAN)以及无线城域网(WMAN)等相结合,改善无线网络的性能,提高网络的覆盖范围。随着无线Mesh网络技术的厂泛应用,IEEE802的相关标准组正在致力于推动WMN技术的发展,制订相关的技术标准。目前,WMN标准已经出现在IEEE802.11s、80215、802.16、802.20中。  相似文献   

7.
An Effective QoS Differentiation Scheme for Wireless Mesh Networks   总被引:1,自引:0,他引:1  
Wireless mesh networking is emerging as an important architecture for future-generation wireless communications systems. Quality of service provisioning is a challenging issue in WMNs. In this article we study an effective QoS differentiation scheme for IEEE 802.16 WiMAX mesh networks. Both collocated and general topologies are exploited. Illustrative numerical examples are presented to demonstrate the effectiveness of the proposed strategy. The impact of key parameters on performance is discussed for differentiating various services. Moreover, with the proposed scheme, WMN scalability can be greatly improved. The challenges with respect to the integration of WMN and cooperative transmission are discussed, and the fairness problem is addressed with potential solutions.  相似文献   

8.
Wireless mesh networking (WMN) is an emerging technology for future broadband wireless access. The proliferation of the mobile computing devices that are equipped with cameras and ad hoc communication mode creates the possibility of exchanging real-time data between mobile users in wireless mesh networks. In this paper, we argue for a ring-based multicast routing topology with support from infrastructure nodes for group communications in WMNs. We study the performance of multicast communication over a ring routing topology when 802.11 with RTS/CTS scheme is used at the MAC layer to enable reliable multicast services in WMNs. We propose an algorithm to enhance the IP multicast routing on the ring topology. We show that when mesh routers on a ring topology support group communications by employing our proposed algorithms, a significant performance enhancement is realized. We analytically compute the end-to-end delay on a ring multicast routing topology. Our results show that the end-to-end delay is reduced about 33 %, and the capacity of multicast network (i.e., maximum group size that the ring can serve with QoS guarantees) is increased about 50 % as compared to conventional schemes. We also use our analytical results to develop heuristic algorithms for constructing an efficient ring-based multicast routing topology with QoS guarantees. The proposed algorithms take into account all possible traffic interference when constructing the multicast ring topology. Thus, the constructed ring topology provides QoS guarantees for the multicast traffic and minimizes the cost of group communications in WMNs.  相似文献   

9.
Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey   总被引:1,自引:0,他引:1  
Interest in broadband wireless access (BWA) has been growing due to increased user mobility and the need for data access at all times. IEEE 802.16e based WiMAX networks promise the best available quality of experience for mobile data service users. Unlike wireless LANs, WiMAX networks incorporate several quality of service (QoS) mechanisms at the Media Access Control (MAC) level for guaranteed services for data, voice and video. The problem of assuring QoS is basically that of how to allocate available resources among users in order to meet the QoS criteria such as delay, delay jitter and throughput requirements. IEEE standard does not include a standard scheduling mechanism and leaves it for implementer differentiation. Scheduling is, therefore, of special interest to all WiMAX equipment makers and service providers. This paper discusses the key issues and design factors to be considered for scheduler designers. In addition, we present an extensive survey of recent scheduling research. We classify the proposed mechanisms based on the use of channel conditions. The goals of scheduling are to achieve the optimal usage of resources, to assure the QoS guarantees, to maximize goodput and to minimize power consumption while ensuring feasible algorithm complexity and system scalability.  相似文献   

10.
Wireless Internet Service Providers (WISPs) are expected to be the new generation of access providers using the emerging IEEE 802.11 technology. Face to the high competition of providing network services, the WISP have to offer the best service to the users. For this purpose, the WISP networks' managers need to provide Quality of Service (QoS) with a minimum cost in their wireless networks. The current link layer IEEE 802.11b provides fair sharing of the radio resource with no service differentiation mechanism; similarly to the Internet best effort service. However, the ongoing standard IEEE 802.11e should implement a priority mechanism at the link layer to differentiate the users' traffic. In order to overcome the lack of differentiated mechanism in the current link layer IEEE 802.11b, hence controlling the utilization of the scarce radio resource, we propose in this article to deploy Diffserv architecture coupled with an adaptive provisioning of QoS to provide better services to the users with minimum WISP cost and improve the utilization of the radio resource. Compliant with the current and future IEEE 802.11 link layer, the proposed adaptive QoS provisioning mechanism reacts to the radio resource fluctuation and improves the number of accepted clients in the IEEE 802.11 wireless cells based on the WISP business policies. The network layer differentiation provided by the Diffserv architecture intends to control the concurrent access of the traffic to the scarce radio resources at the IP layer of the mobile hosts for the uplink traffic on one hand, and at the IP layer of the base stations for the downlink traffic on the other hand.  相似文献   

11.
In this paper, we present the challenges in supporting multimedia, in particular, VoIP services over multihop wireless networks using commercial IEEE 802.11 MAC DCF hardware, and propose a novel software solution, called Layer 2.5 SoftMAC. Our proposed SoftMAC resides between the IEEE 802.11 MAC layer and the IP layer to coordinate the real-time (RT) multimedia and best-effort (BE) data packet transmission among neighboring nodes in a multihop wireless network. To effectively ensure acceptable VoIP services, channel busy time and collision rate need to be well controlled below appropriate levels. Targeted at this, our SoftMAC architecture employs three key mechanisms: 1) distributed admission control for regulating the load of RT traffic, 2) rate control for minimizing the impact of BT traffic on RT one, and 3) nonpreemptive priority queuing for providing high priority service to VoIP traffic. To evaluate the efficacy of these mechanisms, extensive simulations are conducted using the network simulator NS2. We also implement our proposed SoftMAC as a Windows network driver interlace specification (NDIS) driver and build a multihop wireless network testbed with 32 wireless nodes equipped with IEEE 802.11 a/b/g combo cards. Our evaluation and testing results demonstrate the effectiveness of our proposed software solution. Our proposed collaborative SoftMAC framework can also provide good support for A/V streaming in home networks where the network consists of hybrid WLAN (wireless LAN) and Ethernet  相似文献   

12.
Mesh WLAN networks: concept and system design   总被引:8,自引:0,他引:8  
In recent years WLAN technology has become the common wireless access technology for mobile computing. Additional to infrastructure access to WLAN networks, peer-to-peer and mesh networking are currently gaining in interest. Mesh networking techniques using WLAN are being standardized in IEEE 802.11s. This article describes use cases, the main technical issues, and a set of potential solutions for mesh network development. Furthermore, an overview of the standardization activities in IEEE 802.11s is presented. The key technical aspects of mesh networks identified are topology creation, routing, medium access control, security, quality of service, and power efficiency.  相似文献   

13.
Internet protocol television (IPTV) service depends on the network quality of service (QoS) and bandwidth of the broadband service provider. IEEE 802.16j mobile multihop relay Worldwide Interoperability for Microwave Access networks have the opportunity to offer high bandwidth capacity by introducing relay stations. However, to actually satisfy QoS requirements for offering IPTV services (HDTV, SDTV, Web TV, and mobile TV) for heterogeneous users' requests, providers must use a video server for each IPTV service type, which increases the network load, especially bandwidth consumption and forwarding time. In this paper, we present a solution for forwarding IPTV video streaming to diverse subscribers via an 802.16j broadband wireless access network. In particular, we propose a new multicast tree construction and aggregation mechanism based on the unique property of prime numbers. Performance evaluation results show that the proposed scheme reduces both bandwidth consumption and forwarding time.  相似文献   

14.
In this paper, we present a throughput-maximizing routing metric, referred to as expected forwarding time (EFT), for IEEE 802.11s-based wireless mesh networks. Our study reveals that most of the existing routing metrics select the paths with minimum aggregate transmission time of a packet. However, we show by analyses that, due to the shared nature of the wireless medium, other factors, such as transmission time of the contending nodes and their densities and loads, also affect the performance of routing metrics. We therefore first identify the factors that hinder the forwarding time of a packet. Furthermore, we add a new dimension to our metric by introducing traffic priority into our routing metric design, which, to the best of our knowledge, is completely unaddressed by existing studies. We also show how EFT can be incorporated into the hybrid wireless mesh protocol (HWMP), the path selection protocol used in the IEEE 802.11s draft standard. Finally, we study the performance of EFT through simulations under different network scenarios. Simulation results show that EFT outperforms other routing metrics in terms of average network throughput, end-to-end delay, and packet loss rate.  相似文献   

15.
Oche  Michael  Md Noor  Rafidah  Jalooli  Ali 《Wireless Networks》2015,21(1):315-328

In order to deliver a qualitative Internet Protocol Television (IPTV) service over vehicular ad hoc networks (VANETs), a quality of service (QoS) mechanism is needed to manage the allocate of network resources to the diverse IPTV application traffic demands. Unlike other mobile network, VANETs have certain unique characteristic that presents several difficulties in providing an effective QoS. Similarly, IPTV requires a constant stream for QoS which at the moment is quite difficult due to the inherent VANET characteristics. To provide an effective QoS that will meet the IPTV application service demands, VANETs, must satisfy the compelling real-time traffic streaming QoS requirement (i.e., minimum bandwidth allocation, packet loss and jitter). In this report, we evaluate via simulation the feasibility of deploying quality IPTV services over VANETs, by characterizing the association between the IPTV streaming quality determining factors (i.e., throughput, delay, loss, jitter) and the IPTV quality degradation, with respect to node density and node velocity. Furthermore, we used an objective QoS metric (Media-Delivery-Index) to identify, locate and address the loss or out-of-order packet. We outline how, using these information’s can support in shaping network parameters to optimize service flows. The implementation assures a priority for handling IPTV traffic, such that maximise the usage of VANETs resources, and opens the possibility that loss and delay can be minimised to a degree that could guarantee quality IPTV service delivery among vehicle in a vehicular network system.

  相似文献   

16.
The degradation of end-to-end quality of service (QoS) on mobile users is becoming a common issue for IEEE 802.11 infrastructure-based networks in crowded areas. This research tackles the issue by employing an SDN framework on an integrated wireless/wired environment. Thereby, we present the development and implementation of a system that performs user management by analyzing the network load from the OpenFlow statistics, as well as the wireless information collected from the associated users. In order to analyse the behaviour of the proposed user migration algorithm, we evaluate the system under scenarios with different traffic load and user session duration. From the experiments, we observed that in several cases wireless users get a considerable QoS improvement at the application layer (up to 30% improvement in throughput and up to 20% in delay in our simulations) once the system is activated. Based on the results, we present an analysis on how and when user migration in multi-access point IEEE 802.11 networks can be most effective.  相似文献   

17.
A Seamless Handoff Mechanism for DHCP-Based IEEE 802.11 WLANs   总被引:1,自引:0,他引:1  
IEEE 802.11 wireless networks have gained great popularity. However, handoff is always a critical issue in this area. In this paper, we propose a novel seamless handoff mechanism for IEEE 802.11 wireless networks which support IEEE 802.11i security standard. Our approach consists of a dynamic tunnel establishing procedure and a seamless handoff mechanism. Both intra- and inter-subnet handoff cases are considered in our seamless handoff approach. Our work focuses on handoffs in DHCP-based IP networks rather than mobile IP-supported networks, but the proposed scheme can be easily tailored to mobile IP-supported networks.  相似文献   

18.
Currently, mobile ad hoc networks (MANETs) lack load-balancing capabilities, and thus, they fail to provide good performance especially in the case of a large volume of traffic. Ad hoc networks lack also service differentiation. However, in these wireless environments, where channel conditions are variable and bandwidth is scarce, the differentiated services developed for the Internet are suboptimal without lower layers' support. The IEEE 802.11 standard for Wireless LANs is the most widely used WLAN standard today. It has a mode of operation that can be used to provide service differentiation, but it has been shown to perform badly. In this paper, we present a simple but very effective method for support Quality of Service, by the use of load-balancing and push-out scheme. This approach offers to the mobile node: the ability to alleviate congestion by traffic distribution of excessive load, and to support priority of packets in the single MAC buffer. We evaluate the performance of our algorithm and compare it with the original IEEE 802.11b protocol. Simulation results show that this new approach reduces packet loss rate and increases throughput as well as provides service differentiation in the MAC layer.  相似文献   

19.
Recently, multi‐radio mesh technology in wireless networks has been under extensive research. This is because of its potential of overcoming the inherent wireless multi‐hop throughput, scalability and latency problems caused by the half‐duplex nature of the IEEE 802.11. The concept of deploying multiple radios in wireless network access points (APs) has shown a promising way to enhance the channel selection and the route formation while the MESH topology allows more fine‐grained interference management and topology control. Within this realm, given a set of end‐to‐end objectives, there are multiple issues that need to be identified when we consider the optimization problem for fixed multi‐channel multi‐hop wireless networks with multiple radios. This paper addresses the static channel assignment problem for multichannel multi‐radio static wireless mesh networks. We first discuss its similarities and differences with the channel assignment problem in cellular networks (WMN). Next, we present four metrics based on which mesh channel assignments can be obtained. Three of these metrics attempt to maximize simultaneous transmissions in a mesh network, either directly or indirectly. The fourth metric quantifies the ‘diversity’ of a particular assignment and can be used as a secondary criterion to the other three metrics. Related optimization models have also been developed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Niyato  D. Hossain  E. 《IEEE network》2007,21(3):6-14
One of the promising applications of IEEE 802.16 (WiMAX)-based wireless mesh/relay networks is to provide infrastructure/backhaul support for IEEE 802.11-based mobile hotspots. In this article we present an architecture for integrating IEEE 802.11 WLANs with IEEE 802.16-based multihop wireless mesh infrastructure to relay WLAN traffic to the Internet. The major research issues in this integrated architecture are outlined and related work is reviewed. A game-theoretic model is developed for radio resource management in this integrated network architecture. In particular, a multiplayer bargaining game formulation is used for fair bandwidth allocation and optimal admission control of different types of connections (e.g., WLAN connections, relay connections, and connections from standalone subscriber stations) in an IEEE 802.16 base station/mesh router. Both connection-level and inconnection-level performances for this bandwidth management and admission control framework are presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号