首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The percentages of oleate (18∶1), linoleate (18∶2), and linolenate (18∶3) in blended soybean oils (SBO) were evaluated for their impact on flavor stability and quality in fried foods. Six SBO treatments, including a control (conventional SBO, 21.5% 18∶1) and a high-18∶1 SBO (HO, 79% 18∶1), were tested. In addition, these two oils were mixed in different ratios to make three blended oils containing 36.9, 50.7, and 64.7% 18∶1, abbreviated as 37%OA, 51%OA, and 65%OA, respectively. Also, a low-18∶3 (LL) SBO containing 1.4% 18∶3 and 25.3% 18∶1 was tested. Bread cubes (8.19 cm3) were fried in each of 18 oils (6 treatments ×3 replicates). The fresh and stored bread cubes fried in 79%OA were second to the cubes fried in LL in overall flavor quality, were the weakest in intensity of stale, grassy, fishy, cardboard, and burnt flavors by sensory evaluation, and contained the least amounts of hexanal, hexanal, t-2-heptenal, t,t-2,4-nonadienal, and t,t-2,4-decadienal in volatile analysis. Other treatments were intermediate in these sensory and instrumental evaluations, as related to their 18∶1, 18∶2, and 18∶3 concentrations. In general, the results suggested that the overall flavor stability and eating quality of foods fried in the six oil treatments from the best to the poorest would be: LL≥79%OA, 65%OA, 51%OA, 37%OA, and control.  相似文献   

3.
The objective of this work was to study the frying stability of soybean oil (SBO) with reduced linoleate (18∶2) and linolenate (18∶3) and elevated oleate (18∶1) contents. High-oleate SBO [HO SBO, 79% oleic acid (OA)] and a control (conventional SBO, 21.5% OA) were tested as is, as well as blended in different ratios to make three blended oils containing 36.9, 50.7, and 64.7% OA, abbreviated as 37%OA, 51%OA, and 65%OA, respectively. In addition, a low-linolenate (LL) SBO containing 1.4% 18∶3 and 25.3% 18∶1 was tested. Bread cubes (8.19 cm3) were fried in each of 18 oils (6 treatments×3 replicates). We hypothesized that stability indicators would be indirectly related to the total 18∶2 plus 18∶3 percentages and/or the calculated oxidizability. In general, the results were fairly predictable based on total 18∶2 and 18∶3 concentrations. The overall frying stability of the six oil treatments, from the best to the poorest, was: 79%OA, 65%OA, 51%OA, LL≥37%OA, and the control, with respective total compositions for 18∶2 plus 18∶3 of 10.3, 23.6, 36.3, 59.6, 48.9, and 62.8%. The greatly reduced concentration of 18∶3 in the LL SBO made it more stable than the 37%OA, even though the combined composition of 18∶2 and 18∶3 of LL was greater than that of the 37%OA. Blending conventional SBO with HO SBO had a profound effect on the oxidative stability index and color of the blended oils, but the values were not linearly predictable by the percentage of control in the blended oil. Other stability indices, including calculated oxidizability, calculated iodine value, conjugated dienoic acid value, and viscosity, changed in linear response to an increased proportion of the control in the blends.  相似文献   

4.
A methanolic extract of Noble oat (Avena sativa L.) was tested for its antipolymerization activity in soybean and cottonseed oils heated to 180°C for 10 h per day for 10 d and for its carry-through properties in fried bread cubes. The soybean and cottonseed oils containing 0.005 or 0.007% oat extract (based on total phenolic content) formed significantly lesser amounts of polar compounds with high molecular weight than did the oils containing 0.02% tertiary butyl hydroquinone (TBHQ), 1 ppm dimethylpolysiloxane (DMS) and oils containing no additives (control) as measured by high-performance size-exclusion chromatography. Fatty acid composition, also monitored, showed that oils with either level of oat extract maintained a significantly higher linoleic-to-palmitic acid ratio (18∶2/16∶0) than did the other treatments. Oil extracted from bread cubes fried (180°C) in oils containing TBHQ and oat extract and then stored at 60°C in the dark for up to 14 d had significantly lower (P≤0.05) peroxide values and higher (P≤0.05) 18∶2/16∶0 ratios than did oil extracted from cubes fried in oil containing DMS and in the control oil.  相似文献   

5.
To determine antioxidative effects of ferulic acid and esterified ferulic acids, these compounds were added to soybean oils (SBO), which were evaluated for oxidative stability and frying stability. Additives included feruloylated MAG and DAG (FMG/FDG), ferulic acid, ethyl ferulate, and TBHQ. After frying tests with potato chips, oils were analyzed for retention of additives and polar compounds. Chips were evaluated for hexanal and rancid odor. After 15 h frying, 71% of FMG/FDG was retained, whereas 55% of ethyl ferulate was retained. TBHQ and ferulic acid levels were 6% and <1%, respectively. Frying oils with ethyl ferulate or TBHQ produced significantly less polar compounds than SBO with no additives. Chips fried in SBO with TBHQ or ferulic acid had significantly lower amounts of hexanal and significantly less rancid odor after 8 d at 60°C than other samples. Oils were also aged at 60°C, and stability was analyzed by PV, hexanal, and rancid odor. Oils with TBHQ or FMG/FDG had significantly less peroxides and hexanal, and a lower rancid odor intensity than the control. FMG/FDG inhibited deterioration at 60°C, whereas ethyl ferulate inhibited the formation of polar compounds in frying oil. Ferulic acid acted as an antioxidant in aged fried food. TBHQ inhibited oil degradation at both temperatures. Presented at the 94th AOCS Meeting & Expo, Kansas City, MO, May 4–7, 2003.  相似文献   

6.
To determine effects of very low levels of linolenic acid on frying stabilities of soybean oils, tests were conducted with 2% (low) linolenic acid soybean oil (LLSBO) and 0.8% (ultra-low) linolenic acid soybean oil (ULLSBO) in comparison with cottonseed oil (CSO). Potato chips were fried in the oils for a total of 25 h of oil use. No significant differences were found for either total polar compounds or FFA between samples of LLSBO and ULLSBO; however, CSO had significantly higher percentage of polar compounds and FFA than the soybean oils at all sampling times. Flavor evaluations of fresh and aged (1, 3, 5, and 7 wk at 25°C) potato chips showed some differences between potato chips fried in different oil types. Sensory panel judges reported that potato chips fried in ULLSBO and aged for 3 or 7 wk at 25°C had significantly lower intensities of fishy flavor than did potato chips fried in LLSBO with the same conditions. Potato chips fried in ULLSBO that had been used for 5 h and then aged 7 wk at 25°C had significantly better quality than did potato chips fried 5 h in LLSBO and aged under the same conditions. Hexanal was significantly higher in the 5-h LLSBO sample than in potato chips fried 5 h in ULLSBO. The decrease in linolenic acid from 2 to 0.8% in the oils improved flavor quality and oxidative stability of some of the potato chip samples.  相似文献   

7.
Lipoxygenase (LOX)-null soybean lines that lack LOX 2, or LOX 2 and 3, and contain normal (8.0–8.6%) or low (2.0–2.8%) linolenate (18∶3) amounts were evaluated for their oil qualities and storage stabilities. Soybean oils of six genotypes were extracted by both laboratory-scale and pilot-plant systems and were refined, bleached, and deodorized in the laboratory. Citric acid was added to oils during the cool-down stage of deodorization. Two replications, separated at the point of conditioning, were evaluated for each genotype. Under storage conditions of 55–60°C in the dark, soybean oils with low 18∶3 contents were significantly (P<-0.05) more stable as measured by peroxide values than were oils with normal 18∶3 contents, regardless of the LOX content of the beans. The volatile analysis showed few differences between oils with low and high 18∶3 contents or among oils from beans that lack different LOX enzymes. After 16 d of storage, the amount of 1-octen-3-ol was significantly greater in oils with low 18∶3 content, and soybean oils from beans with normal LOX content had a significantly (P<-0.05) lower amount of 1-octen-3-ol than did the oils that lacked LOX enzymes. Storage at 35°C under light showed no differences in volatile amounts or sensory evaluations after 14 d of storage. During storage, peroxide values tended to be lower in oils from beans with normal 18∶3 content and in oils from beans with normal LOX content. Generally, the abscence of LOX 2 or LOX 2 and 3, although having a small effect on lipid oxidation, was not as important to oil quality as was the 18∶3 content.  相似文献   

8.
Oil was hexane-extracted from soybeans that had been modified by hybridization breeding for low-linolenic acid (18∶3) content. Extracted crude oils were processed to finished edible oils by laboratory simulations of commercial oil processing procedures. Oils from three germplasm lines N83-375 (5.5% 18∶3), N89-2009 (2.9% 18∶3) and N85-2176 (1.9% 18∶3) were compared to commercial unhydrogenated soybean salad oil with 6.2% 18∶3 and two hydrogenated soybean frying oils, HSBOI (4.1% 18∶3) and HSBOII (<0.2% 18∶3). Low-18∶3 oils produced by hybridization showed significantly lower room odor intensity scores than the commercial soybean salad oil and the commercial frying oils. The N85-2176 oil with an 18∶3 content below 2.0% showed no fishy odor after 10 h at 190°C and lower burnt and acrid odors after 20 h of use when compared to the commercial oils. Flavor quality of potatoes fried with the N85-2176 oil at 190°C after 10 and 20 h was good, and significantly better at both time periods than that of potatoes fried in the unhydrogenated oil or in the hydrogenated oils. Flavor quality scores of potatoes fried in the N89-2009 oil (2.9% 18∶3) after 10 and 20 h was good and equal to that of potatoes fried in the HSBOI oil (4.1% 18∶3). Fishy flavors, perceived with potatoes fried in the low-18∶3 oils, were significantly lower than those reported for potatoes fried in the unhydrogenated control oil, and the potatoes lacked the hydrogenated flavors of potatoes fried in hydrogenated oils. These results indicate that oils with lowered linolenic acid content produced by hybridization breeding of soybeans are potential alternatives to hydrogenated frying oils.  相似文献   

9.
Extraction and identification of antioxidants in oats   总被引:3,自引:0,他引:3  
Eight separate solvent systems were used with groats and hulls of several lines of oats to determine which system resulted in the most effective, rapid extraction of antioxidants. Antioxidant activity at room temperature was estimated by using thin-layer chromatography (TLC) along with a β-carotene spray. The greatest antioxidant activities were obtained with methanolic antioxidant extracts derived from Noble and Ogle oats and hulls. These extracts were added to soybean oil (SBO) and their effectiveness was compared with that of butylated hydroxytoluene (BHT), tertiary butyl hydroquinone (TBHQ) and a control (no additives) at 32°C, 60°C and 180°C. A petroleum ether extract of Noble oats also was tested in SBO at 180°C. Peroxide values (PV) for oils with added antioxidants during storage at 32°C and 60°C showed that the Ogle oat extract was more effective than the other oat and hull extracts or the control. There were no significant differences in effectiveness among the extracts and the control at 60°C. At 180°C, the stability of each oil was determined by measuring conjugated dienoic acid values (CD) and the relative amounts of the unoxidized fatty acid methyl esters (FAME) 18:2, 18:3 and 18:2/16:0. All oils with added oat and hull extracts had significantly lower CD and significantly higher 18:2/16:0 than oils with added BHT, TBHQ or the control during 14 days at frying temperature. Phenolic and hydroxy-phenolic antioxidant compounds with acids, alcohols, sugars or glycerides attached were tentatively identified in the oat and hull extracts by using TLC and Chromatographic sprays. To whom correspondence should be addressed at Food Science and Human Nutrition Dept., 3367 Dairy Industry Building, Iowa State University, Ames, IA 50011.  相似文献   

10.
Soybean oil was continuously hydrogenated in a slurry system to investigate the effects of linolenate content and additives on cooking oil performance. Room odor evaluations carried out on oils heated to 190 C after frying bread cubes showed that the oils hydrogenated with Cu catalyst to 2.4% linolenate (Cu-2.4) and with Ni catalyst to 4.6 linolenate (Ni-4.6) had a significantly lower odor intensity score than the unhydrogenated soybean oil (SBO). Other hydrogenated oils (Cu-0.5 and Ni-2.7) were not significantly better than SBO. Oil hydrogenated with Ni (Ni-0.4) scored poorly because of its strong “hydrogenated-paraffin” odor. The performance of all partially hydrogenated oils (2.4, 2.7 and 4.6% linolenate) was improved by adding methyl silicone (MS), but the most hydrogenated oils (0.5 and 0.4% linolenate) were not improved. Although with tertiary butyl hydroquinone (TBHQ) no improvement was obtained, with the combination of TBHQ + MS all odor scores were lower, indicating a synergistic effect. Evaluations of bread cubes after intermittent heating and frying showed that the breads fried in most hydrogenated oils (Ni-0.4, Cu-2.4 and Ni-2.7) were rated significantly better in flavor quality than breads fried in SBO. The bread cubes fried in MS-treated oils had significantly higher flavor quality scores than breads fried in SBO or SBO containing TBHQ. Dimer analyses by gel permeation chromatography and color development after heat treatments also did not correlate with sensory analyses.  相似文献   

11.
One canola oil and six soybean oils with different fatty acid compositions were heated intermittently, and bread cubes were fried in them to determine the stability of the oils. Two of the soybean oils were commercial varieties Hardin and BSR 101. The other soybean oils were from experimental lines developed at Iowa State University, and included A17 with 1.5% linolenate (18:3) and 15.1% palmitate (16:0), A16 with 1.9% 18:3 and 10.6% 16:0, A87-191039 with 1.8% 18:3 and 29.1% oleate (18:1) and A6 with 27.7% stearate (18:0). The soybean seeds were cold-pressed and crude canola oil was obtained without additives. Oils were refined, bleached and deodorized under laboratory conditions with additions. Each oil (300 mL) was heated to 180 ± 5°C in a minifryer. Bread cubes were fried at the beginning of heating, and half of the cubes were used for analyses. The second half was analyzed after storage at 60°C for seven days. Heating of the oils was continued for 20 h, cooled for 10 h, and then reheated for another 20 h, after which additional bread cubes were fried and analyzed. Results of sensory evaluation of the fried cubes, the peroxide values (PV) of oils extracted from the cubes and the conjugated dienoic acid values of the oils showed that the A17, A16, A87-191039 and A6 oils had better stabilities than did Hardin, BSR 101 and canola oils. The initial 18:3 contents of oils predicted their oxidative and flavor stabilities under heating and frying conditions (for PVvs. 18:3, r=0.89,P=0.008; for flavor qualityvs. 18:3, r=−0.93,P=0.002; for flavor intensityvs. 18:3, r=−0.91,P=0.004).  相似文献   

12.
Two-kilogram quantities of structured lipids (SL) of menhaden fish and canola oils containing caprylic acids (8∶0) were produced in a laboratory-scale packed-bed bioreactor by acidolysis catalyzed by an immobilized lipase, Lipozyme IM, from Rhizomucor miehei. SL were characterized and their oxidative stabilities investigated. The SL contained 29.5% 8∶0 for fish oil and 40.15 for canola oil. Polyunsaturated fatty acids (PUFA) of fish oil remained unchanged after the modification while PUFA of canola oil were reduced from 29.6 to 21.2%. Monoenes, especially 18∶1n−9, were completely replaced by 8∶0 in fish oil and reduced from 61.9 to 34.7% in canola oil. Downstream processing of enzymatically produced SL led to loss in natural total tocopherol contents of the fish and canola oils. The effects of antioxidants such as α-tocopherol (TOC), tert-butylhydroxyquinone (TBHQ), and combinations thereof on the oxidative stability of SL were investigated. SL were analyzed for oxidative stability index, peroxide value, conjugated diene content, free fatty acid content, iodine value, saponification number, and thiobarbituric acid value. Iodine value of unmodified fish oil (154.71) was reduced to 144.10 and that of canola oil (114.49) to 97.27 after modification. The SN increased from 183.72 to 242.63 for fish oil and from 172.50 to 227.90 for canola oil. TBHQ exhibited better antioxidant effects than TOC. A combination of TBHQ/TOC also proved to be an effective antioxidant for SL. We suggest the addition of antioxidants to enzymatically produced and purified SL.  相似文献   

13.
Oxidative and flavor stability of oil from lipoxygenase-free soybeans   总被引:1,自引:0,他引:1  
Soybeans that lack or contain three lipoxygenase (LOX) isozymes, LOX-1, LOX-2, and LOX-3, were evaluated for oxidative and flavor stability at 60°C in the dark and at 35°C in the light. Although the two types of soybeans had a similar genetic background, there were significant differences (P≤0.01) in fatty acid percentages between the lipoxygenase-free and normal oils before and after storage at both temperatures. The linolenic acid content of oil from LOX-free germplasm before storage averaged 7.2%, while normal lines averaged 6.6%. The linoleic acid content after storage averaged 6.9% for LOX-free and 6.6% for normal oils. LOX-free oil was not significantly different from normal oil in flavor, as judged by a sensory panel, or in concentrations of volatiles during storage at either storage condition. LOX-free oil had less hexanal than normal oil before storage, but had significantly greater (P≤0.05) levels after storage for two weeks at 35°C. Peroxide values of oil from LOX-free soybeans were significantly greater (P≤0.01) than oil from the normal soybean after storage at 60 and 35°C. LOX-free oil had significantly greater (P≤0.01) levels of α-, β-, and γ-tocopherols. In general, oil from LOX-free soybeans did not have improved flavor or oxidative stability. Differences between the two oil types in peroxide value and in production of a few volatiles were probably a result of the differences in initial fatty acid composition.  相似文献   

14.
Oxidative and flavor stability of oil from lipoxygenase-free soybeans   总被引:2,自引:0,他引:2  
Soybeans that lack or contain three lipoxygenase (LOX) isozymes, LOX-1, LOX-2, and LOX-3, were evaluated for oxidative and flavor stability at 60°C in the dark and at 35°C in the light. Although the two types of soybeans had a similar genetic background, there were significant differences (P ≤ 0.01) in fatty acid percentages between the lipoxygenase-free and normal oils before and after storage at both temperatures. The linolenic acid content of oil from LOX-free germplasm before storage averaged 7.2%, while normal lines averaged 6.6%. The linoleic acid content after storage averaged 6.9% for LOX-free and 6.6% for normal oils. LOX-free oil was not significantly different from normal oil in flavor, as judged by a sensory panel, or in concentrations of volatiles during storage at either storage condition. LOX-free oil had less hexanal than normal oil before storage, but had significantly greater (P ≤ 0.05) levels after storage for two weeks at 35°C. Peroxide values of oil from LOX-free soybeans were significantly greater (P ≤ 0.01) than oil from the normal soybean after storage at 60 and 35°C. LOX-free oil had significantly greater (P ≤ 0.01) levels of α-, β-, and γ-tocopherols. In general, oil from LOX-free soybeans did not have improved flavor or oxidative stability. Differences between the two oil types in peroxide value and in production of a few volatiles were probably a result of the differences in initial fatty acid composition.  相似文献   

15.
To determine effects of expeller pressing/physical refining of soybean oil (SBO) on frying, studies were conducted with expeller-pressed, physically refined, bleached, deodorized SBO (EPSBO); hexane-extracted, refined, bleached, deodorized SBO+TBHQ; and hydrogenated SBO (HSBO). Oils contained citric acid and dimethylpolysiloxane and were used for 35 h of frying french-fried potatoes. Polar compound levels in EPSBO were similar to SBO+TBHQ or HSBO. Flavor quality of potatoes was evaluated by trained, experienced, analytical sensory panelists. In early frying stages, potatoes fried in EPSBO had significantly lower intensities of fishiness than potatoes fried in SBO+TBHQ. Potatoes fried in HSBO were described as “hydrogenated”. Because of differences in flavor intensities and types, potatoes prepared in EPSBO had significantly better quality scores than those fried in SBO+TBHQ or HSBO during the first 15 h of frying. During later stages (25 and 35 h), potatoes fried in EPSBO had significantly better quality scores than potatoes fried in HSBO. Variations in minor oil constituents may partly explain these differences. EPSBO had less total tocopherols and phytosterols than did SBO at 0-time. During frying, TBHQ in SBO and Maillard reaction products in EPSBO probably inhibited tocopherol loss and therefore improved quality.  相似文献   

16.
The effect of power ultrasound on physicochemical properties and oxidative stability of an interesterified soybean oil (IESBO) was investigated. IESBO was crystallized at 32 °C and sonicated for 10 s with acoustic power of 101 W. The sonicated IESBO was tested for melting behavior and chemical composition and compared to those of non sonicated IESBO to determine physical and chemical changes originated as a consequence of sonication. Application of power ultrasound affected the melting behavior of the crystallized fat and did not affect its chemical composition. Oxidation stability of the sonicated IESBO was measured using peroxide value (PV) and compared to that of non sonicated IESBO and liquid soybean oil (SBO) when stored at 25 °C for 105 days followed by storage at 40 °C for 42 days. Power ultrasound did not cause accelerated oxidation in SBO or IESBO until they were highly oxidized (PV > 10 mequiv/kg). At high levels of oxidation, non‐sonicated IESBO had significantly higher PV than sonicated IESBO, while non‐sonicated SBO had significantly lower PV than sonicated SBO.  相似文献   

17.
Flavor stability of high-oleic peanuts stored at low humidity   总被引:4,自引:0,他引:4  
Shelf-life studies were conducted on roasted high-oleic peanuts (HOP; F1250, BC93Q10) and a reference peanut with normal oleic acid content (NOP, Florunner). HOP contained at least 80% oleic acid and 3% linoleic acid, whereas normal-oleic peanuts contained 53% oleic and 27% linoleic acids. Peanuts were dry-roasted to a medium roast (Hunter lab L=50) and stored at 40°C at 18% relative humidity. Samples were removed from storage at different intervals (0, 2, 4, 7, and 10 wk) for sensory evaluation and chemical oxidation measurements. Sensory attributes rated included roasted peanutty flavor, sweetness, crunchiness, and oxidized flavors (cardboardy and painty). The two HOP lines were not significantly different from each other in flavor quality or stability during storage but had better flavor quality and stability than NOP. The latter oxidized faster and developed painty off-flavors to a greater extent than did the HOP lines. Chemical oxidation measurements confirmed higher levels of oxidation in NOP than in the HOP lines. Peroxide values at 10-wk storage were 47 meq/kg oil for NOP and <3 meq/kg oil for the HOP lines. Both HOP lines had greater shelf lives than NOP.  相似文献   

18.
The carbonyl compounds in five oxidized soybean oils (SBO) of various fatty acid compositions were determined. Three were from common normal soybean varieties, and two were from lines developed from new mutant varieties. One mutant line had a linolenate (18:3) content of 3.5% (A5), and one had a stearate (18:0) content of 24% (A6). SBO were stored at 28 C and 60 C. Trichlorophenylhydrazones (TCPH) of carbonyls formed during oxidation were quantified and tentatively identified by gas chromatography. The storage temperature and the composition of the oils affected the types and amounts of volatiles produced. Hexanal was the major volatile in the oils in both storage tests. After 60 C storage, 2- and/or 3-hexenal was present only in the oil with the highest 18:3 content (BSR 101, 18:3=9%). The amounts of the carbonyls formed in A5 were 2 to 5 times less than the amounts formed in BSR 101. The amounts of many of the carbonyls were converted into relative flavor potency by using reported data. Hexanal was the major contributor to flavor. After storage at 28 C, 2- and/or 3-hexenal was the second most intense flavor compound regardless of the 18:3 content of the oil. The amount of a compound and the threshold value did not always predict its flavor importance according to the flavor potency data.  相似文献   

19.
The effects of canola, corn, partially hydrogenated soy (PHS), partially hydrogenated canola (PHC), and low-linolenate canola (LLC) oils on sensory and chemical attributes of tortilla chips were determined initially, after Schaal storage for 8 and 16 d (S8 and S16), and after practical storage for 16 and 24 wk (P16 and P24). Fresh chips were similar to each other in characteristic and off-odors/flavors, except that PHC chips had the lowest characteristic and highest off-odor/flavor. All S8 chips had similar lower (P<0.001) characteristic and greater off-odor/flavor scores than hidden reference chips, but PHC chips had a more intense off-odor than did LLC chips. After S16, canola chips had the lowest (P<0.001) characteristic and highest off-odor/flavor; all other chips were similar. At P16, canola, PHC, and LLC chips had slightly higher (P<0.001) characteristic odor/flavor scores than other chips. After P16 and P24, all stored tortilla chips had lower characteristic odor/flavor scores than hidden reference chips. Rancid, painty, buttery odor/flavor, and bitter flavor notes were detected in Schaal and practically stored chips. Stored chips from all oils were similar in color and crispness. The peroxide value and thep-anisidine value for oils extracted from Schaal-stored chips tended to support panelist data; results from similar analyses of practically stored chips did not. Peroxide values andp-anisidine values for stored used frying oils and the corresponding sensory data for stored chips generally did not agree. Results indicate considerable potential for increasing use of canola oil products for frying tortilla chips.  相似文献   

20.
Oils containing both n−3 and n−6 fatty acids have important clinical and nutritional applications. Lipase-catalyzed acidolysis of seal blubber (SBO) and menhaden oils (MO) with γ-linolenic acid (GLA) was carried out in hexane. The process variables studied for lipase-catalyzed reaction were concentration of enzyme (100–700 units/g of oil), reaction temperature (30–60°C), reaction time (0–48 h), and mole ratio of GLA to triacylglycerols (TAG) (1∶1 to 5∶1). Two lipases chosen for acidolysis reaction were from Pseudomonas species (PS-30) and Mucor miehei. Lipase PS-30 was chosen over Mucor (also known as Rhizomucor) miehei to catalyze the acidolysis reaction owing to higher incorporation of GLA. For the acidolysis reaction, optimal conditions were a 3∶1 mole ratio of GLA to TAG, reaction temperature of 40°C, reaction time of 24 h, and an enzyme concentration of 500 units/g of oil. Under these conditions, incorporation of GLA was 37.1% for SBO and 39.6% for MO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号