共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对目前表面肌电信号(surface electromyography,sEMG)端到端手势识别特征提取不充分、多手势识别准确率不高的问题,提出一种融合注意力机制的多流卷积肌电手势识别网络模型.该模型通过滑动窗口将多通道时域sEMG生成肌电子图,并使用多流卷积神经网络充分提取每个采集通道sEMG的语义特征,然后将其聚合得到丰富的多通道手势语义特征;同时从时间和特征通道维度上计算语义特征的注意力分布图,强化有用特征并弱化无用特征,进一步提高多手势识别准确率.实验使用Ninapro数据集进行训练和测试,并与主流的肌电手势识别模型进行对比.实验结果表明,该模型在识别准确率上具有更好的表现,证明了该模型的有效性. 相似文献
3.
为了提高表面肌电信号(sEMG)手势识别算法的准确性,并解决人为提取大量特征具有局限性的问题,提出了一种基于深度神经网络的手势识别方法。将MYO臂环采集到的8通道sEMG数据,采用活动段分割的方法探测到有效动作;设计出一种融合卷积神经网络(CNN)和长短时记忆(LSTM)网络的神经网络;实验的结果表明手势识别准确率为91.6%,验证了提出的方案高效可行。 相似文献
4.
5.
6.
为了提升表面肌电信号(sEMG)手势动作识别的准确性和训练效率,提出一种基于LightGBM的手势识别模型.传统的GBDT算法训练效率较低,准确率无法快速提升,LightGBM算法采用基于梯度的单侧采样和互斥特征捆绑改进性能,具有训练速度快、占用内存低、分类准确率高的优势.将臂环采集到的8通道sEMG数据按时间顺序进行... 相似文献
7.
表面肌电信号是人体运动时肌肉、神经活动发出的生物电信号在体表的表现,目前已成为对多自由度假肢理想控制的信号源,BP神经网络在肌电信号源模式识别上被应用广泛,但存在如学习收敛速度慢、不能保证收敛到全局最优点等缺点,鉴于以上缺点设计了基于遗传算法的BP神经网络对肌电信号进行模式识别,较好的改善BP神经网络缺点,提高了识别的准确率。 相似文献
8.
9.
10.
11.
13.
14.
为了获得更加便捷和简单的人机交互方式,采用由Arduino UNO开发板和肌电传感器组成的双通道表面肌电信号采集系统采集手前臂的表面肌电信号,并在上位机中利用MATLAB(R2018b)对采集到的信号进行预处理、活动段检测、特征提取和分类器训练与预测;在识别出手势动作之后,利用GUI界面实时地显示出识别结果。该系统从肌电信号到手势识别、再从手势识别到计算机系统的人机交互方式展现了巨大的潜力和应用空间,尤其是在虚拟现实领域。 相似文献
15.
16.
17.
18.
基于表面肌电信号(sEMG)的手势识别在人机交互中发挥着重要作用,然而,由于sEMG具有非线性和随机性,因此提升基于稀疏多通道sEMG的手势识别准确率难度较高。提出一种融合注意力机制的多视图卷积手势识别模型。首先使用200 ms滑动窗口提取经典的sEMG特征集构建多视图输入,其次利用高效通道注意力对多视图特征在通道维度进行加权,以强化有效特征同时弱化无效特征,最后通过多视图卷积从带有注意力权重的肌电特征中提取高层特征,利用高层特征融合模块对其进行融合以降低数据维度并提高模型鲁棒性。在NinaPro DB1、NinaPro DB5、NinaPro DB7 3个肌电公共数据集上进行训练和评估,结果表明,该模型在200 ms滑动采样窗口上的平均识别准确率分别为87.98%、94.97%和89.67%,整段手势动作的平均投票准确率分别为97.38%、98.41%和97.09%,平均信息传输率为1 308.71 bit/min。与传统机器学习方法和近年来前沿的深度学习手势识别方法相比,所提模型在单模态肌电和多模态手势识别上均具有更高的识别准确率,验证了其有效性和通用性。 相似文献
19.
20.
多通道表面肌电信号(surface electromyography,sEMG)传统手势识别方法,主要提取各个通道时域、频域和时频域特征作为分类器的输入,鲜有考虑通道间的相关性,在提升识别精度上遇到瓶颈。为了充分利用sEMG多通道信息以提高手势识别精度,提出一种以多通道相关性为特征的肌电手势识别方法。该方法计算多通道间一致性相关系数,作为多通道sEMG线性相关特征参数,同时获取多通道间的互信息,作为多通道sEMG非线性相关特征参数。实际运用中精确估计联合概率密度函数往往十分困难,根据互信息与copula熵关系,将互信息估计转化为copula熵的估计,通过经验分布函数进行概率积分变换,采用非参数估计方法估计copula熵,从而避免联合概率密度函数的估计。利用两种相关性特征参数构建多通道相关性特征进行对比实验,基于stacking模型使用多通道相关性特征与4种常用时域特征进行识别并对比结果,其次基于多通道相关性特征使用stacking模型与5种常用分类器进行对比识别,实验结果表明所提的多通道相关性特征能有效区分手势动作,在采集的健康受试者手势数据集上平均识别准确率达到94%。 相似文献