首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《微型机与应用》2017,(15):59-61
运用卷积神经网络原理,实现一维多通道的表面肌电信号的手势识别,避免了复杂的前期表面信号的预处理,以及手工特征提取阶段。文中分别采集右手的握拳、向左、向右和展拳4种手势的表面肌电信号。然后将采集的四种不同手势的肌电信号进行切割与标记,生成不同信号长度的八通道信号的训练集与测试集,运用卷积神经网络的原理,分别对其进行卷积、下采样。经过试验研究发现,运用卷积神经网络处理一维多通道表面肌电信号,从而实现手势识别的算法是可行的,并且能够得到较高的识别率。  相似文献   

2.
针对目前表面肌电信号(surface electromyography,sEMG)端到端手势识别特征提取不充分、多手势识别准确率不高的问题,提出一种融合注意力机制的多流卷积肌电手势识别网络模型.该模型通过滑动窗口将多通道时域sEMG生成肌电子图,并使用多流卷积神经网络充分提取每个采集通道sEMG的语义特征,然后将其聚合得到丰富的多通道手势语义特征;同时从时间和特征通道维度上计算语义特征的注意力分布图,强化有用特征并弱化无用特征,进一步提高多手势识别准确率.实验使用Ninapro数据集进行训练和测试,并与主流的肌电手势识别模型进行对比.实验结果表明,该模型在识别准确率上具有更好的表现,证明了该模型的有效性.  相似文献   

3.
为了提高表面肌电信号(sEMG)手势识别算法的准确性,并解决人为提取大量特征具有局限性的问题,提出了一种基于深度神经网络的手势识别方法。将MYO臂环采集到的8通道sEMG数据,采用活动段分割的方法探测到有效动作;设计出一种融合卷积神经网络(CNN)和长短时记忆(LSTM)网络的神经网络;实验的结果表明手势识别准确率为91.6%,验证了提出的方案高效可行。  相似文献   

4.
5.
6.
为了提升表面肌电信号(sEMG)手势动作识别的准确性和训练效率,提出一种基于LightGBM的手势识别模型.传统的GBDT算法训练效率较低,准确率无法快速提升,LightGBM算法采用基于梯度的单侧采样和互斥特征捆绑改进性能,具有训练速度快、占用内存低、分类准确率高的优势.将臂环采集到的8通道sEMG数据按时间顺序进行...  相似文献   

7.
表面肌电信号是人体运动时肌肉、神经活动发出的生物电信号在体表的表现,目前已成为对多自由度假肢理想控制的信号源,BP神经网络在肌电信号源模式识别上被应用广泛,但存在如学习收敛速度慢、不能保证收敛到全局最优点等缺点,鉴于以上缺点设计了基于遗传算法的BP神经网络对肌电信号进行模式识别,较好的改善BP神经网络缺点,提高了识别的准确率。  相似文献   

8.
传统的手势识别系统由特征提取和分类器组成,需要人工设计特征,但很难达到足够满意的效果且耗费大量的时间。将卷积神经网络应用于手势识别,能直接把图像数据输入网络,且不用进行复杂的前期预处理。卷积神经网络拥有很强的鲁棒性和较低的复杂性,通过大量的仿真实验,证明了该识别方法具有很好的识别效果,相比现有方法有较大的优势。  相似文献   

9.
为了提高手势识别过程中识别率,提出了一种基于双通道卷积神经网络(CNN)的识别算法.首先,对原始手势图像进行预处理,得到手部边缘图像;然后,分别选取手势图像和手部边缘图像作为CNN的两个输入通道;最后,在全连接层进行特征融合,并用SoftMax分类器对输出结果进行分类.通过实验证明:该算法能有效提高手势识别率,达到99...  相似文献   

10.
为了实现人体手势姿态识别的目标,选用氯化银(AgCl)贴片电极作为信号传感端,通过采集前臂表面肌电(SEMG)信号,经信号放大、滤波等前期处理,再经活动段检测、降噪等信号处理后,提取伸食指、握拳、伸腕、屈腕4种手势的均方根值和积分EMG值作为特征向量,送入概率神经网络(PNN)中进行训练识别,实现人体手势识别.实验结果表明:PNN对前臂SEMG信号的模式识别的正确率可达到97.62%,将PNN应用于手势识别系统具有可行性.  相似文献   

11.
《微型机与应用》2017,(17):56-58
为了改善传统肌电信号手势识别过程的复杂性,将稀疏表示用于表面肌电信号手势识别。针对不同的动作模式下对表面肌电信号提取的特征总是有较大的差异,稀疏表示的过程可以将差异放大,从而改善分类效果。本文首先采集不同手势的多通道表面肌电信号,然后将多通道信号进行切割;通过求解测试样本在训练矩阵下的稀释表示,达到分类识别的目的,并通过实验仿真验证了算法的可行性和优越性。  相似文献   

12.
13.
14.
为了获得更加便捷和简单的人机交互方式,采用由Arduino UNO开发板和肌电传感器组成的双通道表面肌电信号采集系统采集手前臂的表面肌电信号,并在上位机中利用MATLAB(R2018b)对采集到的信号进行预处理、活动段检测、特征提取和分类器训练与预测;在识别出手势动作之后,利用GUI界面实时地显示出识别结果。该系统从肌电信号到手势识别、再从手势识别到计算机系统的人机交互方式展现了巨大的潜力和应用空间,尤其是在虚拟现实领域。  相似文献   

15.
《微型机与应用》2017,(22):58-61
针对光照变化、背景噪声等复杂环境对手势识别的影响,提出了一种基于YCb Cr空间肤色分割去除背景结合卷积神经网络进行手势识别方法。首先根据人体肤色在YCb Cr颜色空间中的聚类效果,采用基于椭圆模型的肤色检测方法进行手势分割;然后对分割后的手势图像提取骨架与边缘相融合的手势特征图;再通过深层次的Alex Net卷积神经网络结构,对经过融合的手势特征图进行识别。实验结果表明,针对复杂的背景环境,该算法具有较强的鲁棒性,在不同数据集下对手势的平均识别率提升了4%,可以达到99.93%。  相似文献   

16.
基于卷积神经网络的手势识别初探   总被引:3,自引:0,他引:3  
提出一种用于手势识别的新算法,使用卷积神经网络来进行手势的识别。该算法避免了手势复杂的前期预处理,可以直接输入原始的手势图像。卷积神经网络具有局部感知区域、层次结构化、特征抽取和分类过程等特点,在图像识别领域获得广泛的应用。试验结果表明,该方法能识别多种手势,精度较高且复杂度较小,具有很好的鲁棒性,也克服传统算法的诸多固有缺点。  相似文献   

17.
针对复杂动态手势识别问题,提出一种融合表面肌电和加速度传感信息的识别方法,对四路表面肌电与三轴加速度信号进行数据采集,通过预处理提取有效活动段,将一个完整动态手势分割为三个区段:起始段、主特征段和收尾段,提取加速度信号的宏观全局特征,并与主特征段表面肌电信号的复杂度微观细节特征组成特征向量,输入支持向量机完成分类。实验结果显示,该方法对4名受试者执行的6种中国手语手势的最高识别率为 91.2%,证明该方法对复杂动态手势具有较好的可识别性。  相似文献   

18.
基于表面肌电信号(sEMG)的手势识别在人机交互中发挥着重要作用,然而,由于sEMG具有非线性和随机性,因此提升基于稀疏多通道sEMG的手势识别准确率难度较高。提出一种融合注意力机制的多视图卷积手势识别模型。首先使用200 ms滑动窗口提取经典的sEMG特征集构建多视图输入,其次利用高效通道注意力对多视图特征在通道维度进行加权,以强化有效特征同时弱化无效特征,最后通过多视图卷积从带有注意力权重的肌电特征中提取高层特征,利用高层特征融合模块对其进行融合以降低数据维度并提高模型鲁棒性。在NinaPro DB1、NinaPro DB5、NinaPro DB7 3个肌电公共数据集上进行训练和评估,结果表明,该模型在200 ms滑动采样窗口上的平均识别准确率分别为87.98%、94.97%和89.67%,整段手势动作的平均投票准确率分别为97.38%、98.41%和97.09%,平均信息传输率为1 308.71 bit/min。与传统机器学习方法和近年来前沿的深度学习手势识别方法相比,所提模型在单模态肌电和多模态手势识别上均具有更高的识别准确率,验证了其有效性和通用性。  相似文献   

19.
徐访  黄俊  陈权 《计算机工程》2021,47(11):283-291
在不带有标志帧的手势视频上进行动态手势识别,容易导致识别准确率下降。提出一种具有分级网络结构的动态手势识别模型。以手势检测模型为第1级网络,手势分类模型为第2级网络,分步完成识别任务。同时,将三维卷积核拆分为时间域和空间域卷积分阶段完成任务,解决三维卷积神经网络中因参数过多造成模型训练或运行时间过长的问题。实验结果表明,在保证实时性的前提下,该模型在EgoGesture数据集上的识别准确率高达93.35%,优于C3D、ResNeXt101、MTUT等模型。  相似文献   

20.
多通道表面肌电信号(surface electromyography,sEMG)传统手势识别方法,主要提取各个通道时域、频域和时频域特征作为分类器的输入,鲜有考虑通道间的相关性,在提升识别精度上遇到瓶颈。为了充分利用sEMG多通道信息以提高手势识别精度,提出一种以多通道相关性为特征的肌电手势识别方法。该方法计算多通道间一致性相关系数,作为多通道sEMG线性相关特征参数,同时获取多通道间的互信息,作为多通道sEMG非线性相关特征参数。实际运用中精确估计联合概率密度函数往往十分困难,根据互信息与copula熵关系,将互信息估计转化为copula熵的估计,通过经验分布函数进行概率积分变换,采用非参数估计方法估计copula熵,从而避免联合概率密度函数的估计。利用两种相关性特征参数构建多通道相关性特征进行对比实验,基于stacking模型使用多通道相关性特征与4种常用时域特征进行识别并对比结果,其次基于多通道相关性特征使用stacking模型与5种常用分类器进行对比识别,实验结果表明所提的多通道相关性特征能有效区分手势动作,在采集的健康受试者手势数据集上平均识别准确率达到94%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号