首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,unipolar pulse (including positive pulse and negative pulse) and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N_2with a rumpetshaped quartz tube.The current–voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H_2O_2,NO_2~-,andNO_3~-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species (OH(A),and O(3p)) in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min~(-1)of gas flow rate.The absorbance intensities of NO_2and N_2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species (N_2(C),OH(A),and O(3p)),nitrogen oxides (NO_2,NO,and N_2O),and higher production of aqueous H_2O_2,NO_2~-,andNO_3~-compared with both unipolar positive and negative discharges.  相似文献   

2.
A direct-current air plasma jet operated underwater presents three stable modes including an intermittently-pulsed discharge, a periodically-pulsed discharge and a continuous discharge with increasing the power voltage. The three discharge modes have different appearances for the plasma plumes. Moreover, gap voltage-current characteristics indicate that the continuous discharge is in a normal glow regime. Spectral lines from reactive species(OH, N_2, N_2~+, H_α,and O) have been revealed in the emission spectrum of the plasma jet operated underwater.Spectral intensities emitted from OH radical and oxygen atom increase with increasing the power voltage or the gas flow rate, indicating that reactive species are abundant. These reactive species cause the degradation of the methylene blue dye in solution. Effects of the experimental parameters such as the power voltage, the gas flow rate and the treatment time are investigated on the degradation efficiency. Results indicate that the degradation efficiency increases with increasing the power voltage, the gas flow rate or the treatment time. Compared with degradation in the intermittently-pulsed mode or the periodically-pulsed one, it is more efficient in the continuous mode, reaching 98% after 21 min treatment.  相似文献   

3.
In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d=0 mm) and volume added surface barrier discharges (d=2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C 3u →B3Πg ) and N2+ (B 2Σu+ → X 2Σg+ ), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d=0 mm structure can excite the largest emission intensity of N 2 (C 3 Πu →B 3Πg ), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2+ (B 2Σu+ → X 2Σg+ )/N 2(C3Πu →B3Πg ) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d=3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2(C3 Π u →B 3Πg ) than that of d=2 mm structure. The structure of d=2 mm can maintain more increasing factor than that of the d=3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.  相似文献   

4.
In this paper,volume coupled surface barrier discharge(V-SBD) with three structures possessing different volumes is excited by sine AC power in atmospheric air.Discharge images,waveforms of applied voltage and discharge current,and optical emission spectra simulating rotational and vibrational temperatures are recorded and analyzed.The effects of applied voltage on emission intensities of N_2(C~3Π_u→ B~3Π_g) and N_2~+(B~2∑_u~+ → X~2E_g~+),and rotational and vibrational temperatures are investigated.The results show that as applied voltage rises,emission intensities and rotational temperatures increase while vibrational temperatures decrease.In addition it is found that,as applied voltage varies,the rotational temperature of surface discharge changes faster than that of volume discharge.  相似文献   

5.
The emission spectra of excited radicals(OH(A~2E),O(3p~3 P),H_α(3P)) and emissive species(N_2~+(B~2∑_u~+),N_2(C_3Π_u)) produced by positive pulsed high-voltage needle-plane corona discharges in atmospheric N_2 and O_2 flows wetted with 10%H_2O at 80 ℃ are used to investigate the relative concentrations of the produced radicals.The results indicate that the tendencies of the concentrations of radicals with discharge conditions are similar to each other due to their similar excitation processes by electron collision.The influence of oxygen flow mixed with the nitrogen flow on the emission intensities of O(3p~5P → 3s~5S_2~.),H_α(3P → 2S),N_2_+(B~2∑_u~+ → X~2∑_g+0-0),and N_2(C~3Π_u → B~3Π_g 1-0) is presented.When the flow rate of oxygen addition is varied from 0-30 ml min~(-1),the emission intensities of O(3p~5P → 3s~5S_2~0.),H_α(3P → 2s),and N_2~+(B~2∑_u~+ →X~2∑_g 0-0) increase and reach a maximum.Then,if the oxygen flow rate increases further,the emission intensities tend to decrease.However,the intensity of N_2(C~3Π_u → B~3Π_g1-0) decreases monotonously with the increasing oxygen flow,which indicates that the electron density decreases with the increasing oxygen flow.By the tendencies of the relative intensities to N_2(C~3Π_u → B~3Π_g 1-0),the concentrations of the total produced O,H,and N_2~+ are shown to increase with the oxygen flow.Based on the reactions for the production of H and O without and with the addition of O_2,the analytic solutions for H and O production are derived in accordance with the experimental results.  相似文献   

6.
In this paper, the AC-excited helium discharges generated between the powered needle electrode enclosed in a conical quartz tube and the grounded de-ionized water electrode are investigated.The current and voltage waveforms exhibit a transition from the glow-like to streamer-like mode discharges, which forms a stable cone-shaped structure at the gas–liquid interface. In this region,the air and water vapor diffusion initiate various physical–chemical processes leading to substantial changes of the primary species emission intensities(e.g., OH, N_2, NO, and O) and the rotational temperatures. The experimentally measured rotational temperature at the gas–liquid interface is 870 K from the N_2(C–B) band with a power input of 26 W. With the prolongation of the discharge time, significant changes in the discharge voltage and current, discharge emission patterns, instantaneous concentrations of the secondary species(e.g., H_2O_2,NO_2~-, and NO_3~-) in the liquid phase, p H values and electrical conductivities of the liquids are observed experimentally. The present study is helpful for deepening the understandings to the basic physical–chemical processes in the discharges in contact with liquids, especially to those occurring in the vicinity of the gas–liquid interface, and also for promoting existing and potential applications of such type of discharges in the fields of environmental protection, biomedicine,agriculture, and so on.  相似文献   

7.
Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cm~(-3) e under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H_2O and O_2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.  相似文献   

8.
To describe the complex kinetics of formation and destruction mechanism of nitrogen dioxide(NO_2), there is an increasing demand for real-time and in situ analysis of NO_2 in the discharge region. Pulsed cavity ring-down spectroscopy(CRDS) provides an excellent diagnostic approach. In the present paper, CRDS has been applied in situ for time evolution measurement of NO_2 concentration which is rarely investigated in gas discharges. In pulsed direct current discharge of NO_2/Ar mixture at a pressure of 500 Pa, a peak voltage of -1300 V and a frequency of 30 Hz, for higher initial NO_2 concentration(3.05?×?10~(14)cm~(-3), 8.88?×?10~(13)cm~(-3)),the NO_2 concentration sharply decreases at the beginning of the discharge afterglow and then becomes almost constant, and the pace of decline increases with pulse duration; however, for lower initial NO_2 concentration of 1.69?×?10~(13)cm~(-3), the NO_2 concentration also decreases at the beginning of the discharge afterglow for 200 ns and 1 μs pulse durations, while it slightly increases and then declines for 2 μs pulse duration. Thus, the removal of low-level NO_2 could not be promoted by a higher mean energy input.  相似文献   

9.
In this paper,we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model.The results show that,the DBDs driven by positive pulse,negative pulse and bipolar pulse possess different behaviors.Moreover,the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes.For the case of the positive pulse,the breakdown field is much lower than that of the negative pulse,and its propagation characteristic is different from the negative pulse DBD.When the DBD is driven by a bipolar pulse voltage,there exists the interaction between the positive and negative pulses,resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors.In addition,the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.  相似文献   

10.
In this paper, a long line-shape dielectric barrier discharge excited by a nanosecond pulse and AC is generated in atmospheric air for the purpose of discussing the uniformity, stability and ability of aramid fiber treatment. The discharge images, waveforms of current and voltage,optical emission spectra, and gas temperatures of both discharges are compared. It is found that nanosecond pulsed discharge has a more uniform discharge morphology, higher energy efficiency and lower gas temperature, which indicates that nanosecond pulsed discharge is more suitable for surface modification. To reduce the water contact angle from 96° to about 60°, the energy cost is only about 1/7 compared with AC discharge. Scanning electron microscopy,Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy are employed to understand the mechanisms of hydrophilicity improvement.  相似文献   

11.
Discharge plasmas in air can be accompanied by ultraviolet(UV) radiation and electron impact,which can produce large numbers of reactive species such as hydroxyl radical(OH·),oxygen radical(O·),ozone(O3),and nitrogen oxides(NOx),etc.The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds(VOCs) treatment with the discharge plasmas.In this paper,we propose a volume discharge setup used to purify formaldehyde in air,which is configured by a plate-to-plate dielectric barrier discharge(DBD) channel and excited by an AC high voltage source.The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde.The energy efficiency ratios(EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel,and the most desirable processing effect is the gas flow velocity within the range from2.50 to 3.33 m s-1.Moreover,the EERs of both the generated dosages of oxides(O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell.Additionally,the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density,and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1.This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD,and it is helpful in the applications of VOCs removal by using discharge plasma.  相似文献   

12.
A dielectric barrier surface discharge device was used to investigate the transition from a filamentary discharge to a glow discharge in air at different gas pressures. Discharge images and waveforms of the applied voltage and discharge current were recorded simultaneously, and it was found that the discharge could transit from filamentary to glow with the decrease in pressure. Optical emission spectra during the transition from a filamentary discharge to a glow one were recorded. Excited electron temperature can be determined from the ratios of the relative intensities of spectral lines while molecular vibration temperature can be measured by analysing spectral lines of the N2 second positive band system. The results show that both the excited temperature and molecular vibration temperature increase with the decrease in the gas pressure. Qualitative explanations are given.  相似文献   

13.
A combined method of granular activated carbon (GAC) adsorption and bipolar pulse dielectric barrier discharge (DBD) plasma regeneration was employed to degrade phenol in water. After being saturated with phenol, the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters. The results showed that different peak voltages, air flow rates, and GAC content can affect phenol decomposition and its major degradation intermediates, such as catechol, hydroquinone, and benzoquinone. The higher voltage and air support were conducive to the removal of phenol, and the proper water moisture of the GAC was 20%. The amount of H2O2 on the GAC was quantitatively determined, and its laws of production were similar to phenol elimination. Under the optimized conditions, the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy,and the total removal of organic carbons achieved 50.4%. Also, a possible degradation mechanism was proposed based on the HPLC analysis. Meanwhile, the regeneration efficiency of the GAC was improved with the discharge treatment time, which attained 88.5% after 100 min of DBD processing.  相似文献   

14.
Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models.The one-dimensional simulation focuses on the effects of applied voltage amplitude,pulse repetition frequency,gap width and γ coefficient on the multiple-current-pulse (MCP) discharge.The results indicate that the MCP behavior will lead to the stratification of electron density distribution in axial direction.Traditional MCP manipulating methods,such as reducing the applied voltage amplitude,increasing the applied voltage frequency,adjusting the gap width,cannot regulate MCPs exhibiting in this work.Further analyses reveal that the increasing electric field of the cathode fall region is the basis for the emergence of MCP behavior.  相似文献   

15.
A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using optical and electrical methods,the discharge characteristics are investigated for the diffuse plasma plume.Results indicate that the discharge has a pulse characteristic,under the excitation of a DC voltage.The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode.It is found that,with an increment of the gas flow rate,both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode,reach their minima at about1.5 L/min,and then slightly increase in the turbulent mode.However,the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min,and then slightly decreases in the turbulent mode.  相似文献   

16.
In this paper,removal of nitrogen oxide (NO) is investigated in capacitive atmospheric pressure discharges driven by both radio-frequency (RF) and trapezoidal pulsed power with a onedimensional self-consistent fluid model.The results show that the number density of NO could be reduced significantly once a short pulse of low duty ratio is additionally applied to the RF power.It is found that the process of NO removal by the pulse-modulated RF discharge could be divided into three stages:the quick reaction stage,the NO removal stage,and the sustaining stage.Furthermore,the temporal evolution of particle densities is analyzed,and the key reactions in each stage are discovered.Finally,the influence on the removal efficiency of the voltage amplitude of the pulse and the RF voltage amplitude is investigated.  相似文献   

17.
The corona discharges provide an efficient way to induce precipitation or eliminate fog by increasing ion density in the open air.In this paper,one bipolar corona discharge array (positive and negative high voltage coupled simultaneously) which can generate high densities of positive and negative ions is developed.The comparison between bipolar corona discharge array and unipolar corona discharge array (positive or negative coupled only) indicates that bipolar corona discharge array can generate ~3 times higher ion density than unipolar corona discharge array.More charged aerosols are produced through collisions between ions and aerosols.The collision rate between aerosols is increased substantially by the attractive forces between positively and negatively charged aerosols.The deposition of aerosols induced by bipolar discharges is 25.7%higher than that of unipolar discharges at the humidity super-saturation condition.Therefore,the bipolar corona discharge system is a new option for the large scale ion sources used for artificial weather modification.  相似文献   

18.
An atmospheric pressure plasma jet (APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrodepositions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge (DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature (EET) for the three grounded electrode positions.  相似文献   

19.
Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra,and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of N_2(C~3Ⅱ_g→B~3Ⅱ_g, Δv =-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary.The electron density is determined to be 10~(16) cm~(-3) according to the Stark broadening effect of the H_α line.  相似文献   

20.
The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply.The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz.The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air).The simulation involves the electro-dynamics,chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation.Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond.The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO.After 5 ms,the time corresponding to the occurrence of 50 successive discharge/post-discharge phases,a higher NO removal rate and a lower ozone production rate are found in humid air.This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号