首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The width of a magnetic island is an important parameter for the quantitative analysis of magnetohydrodynamic-related physics. An electron cyclotron emission radiometer(ECE) is a powerful tool that can be used to obtain this width, which can usually be determined from the flat temperature distribution at the O-point phase or the maxima temperature perturbation. An improved method to estimate the width of a magnetic island is proposed in this paper, and it is independent of calibration. With this method and the existing 24-channel ECE system, the width of a rotation magnetic island can be estimated. Additionally, by filtering the fluctuation ECE signal, the evolution of the magnetic island can be obtained. The results of this method are consistent with those of the integrated magnetic probe signals, which represent the relative change of the magnetic island.  相似文献   

2.
The reliability of diagnostic systems in tokamak plasma is of great significance for physics researches or fusion reactor. When some diagnostics fail to detect information about the plasma status, such as electron temperature, they can also be obtained by another method: fitted by other diagnostic signals through machine learning. The paper herein is based on a machine learning method to predict electron temperature, in case the diagnostic systems fail to detect plasma temperature. The fully-connected neural network, utilizing back propagation with two hidden layers, is utilized to estimate plasma electron temperature approximately on the J-TEXT. The input parameters consist of soft x-ray emission intensity, electron density, plasma current, loop voltage, and toroidal magnetic field, while the targets are signals of electron temperature from electron cyclotron emission and x-ray imaging crystal spectrometer. Therefore, the temperature profile is reconstructed by other diagnostic signals, and the average errors are within 5%. In addition, generalized regression neural network can also achieve this function to estimate the temperature profile with similar accuracy. Predicting electron temperature by neural network reveals that machine learning can be used as backup means for plasma information so as to enhance the reliability of diagnostics.  相似文献   

3.
This paper describes the timing system designed to control the operation time-sequence and to generate clocks for various sub-systems on J-TEXT tokamak. The J-TEXT timing system is organized as a distributed system which is connected by a tree-structured optical fiber network. It can generate delayed triggers and gate signals (0 μs–4000 s), while providing reference clocks for other sub-systems. Besides, it provides event handling and timestamping functions. It is integrated into the J-TEXT Control, Data Access and Communication (J-TEXT CODAC) system, and it can be monitored and configured by Experimental Physics and Industrial Control System (EPICS). The configuration of this system including tree-structured network is managed in XML files by dedicated management software. This system has already been deployed on J-TEXT tokamak and it is serving J-TEXT in daily experiments.  相似文献   

4.
The Joint Texas Experimental Tokamak (J-TEXT), a medium-sized conventional tokamak, serves as a user experimental facility in the China-USA fusion research community. Development of a flexible and easy-to-use J-TEXT central control system (CCS) is of supreme importance for users to coordinate the experimental scenarios with full integration into the discharge operation. This paper describes in detail the structure and functions of the J-TEXT CCS system as well as the performance in practical implementation. Results obtained from both commissioning and routine operations show that the J-TEXT CCS system can offer a satisfactory and effective control that is reliable and stable. The J-TEXT tokamak achieved high-quality performance in its first-ever experimental campaign with this CCS system.  相似文献   

5.
The spectrum effect on the penetration of resonant magnetic perturbation (RMP) is studied withupgraded in-vessel RMP coils on J-TEXT. The poloidal spectrum of the RMP field, especiallythe amplitudes of 2/1 and 3/1 components, can be varied by the phase difference between theupper and lower coil rows, Δϕ=ϕtopϕbottom, where ϕtop and ϕbottom are the toroidal phases ofthe n = 1 field of each coil row. The type of RMP penetration is found to be related to Δϕ,including the RMP penetration of either 2/1 or 3/1 RMP and the successive penetrations of 3/1RMP followed by the 2/1 RMP. For cases with penetration of only one RMP component, thepenetration thresholds measured by the corresponding resonant component are close for variousΔf. However, the 2/1 RMP penetration threshold is significantly reduced if the 3/1 lockedisland is formed in advance. The changes in the rotation profile due to 3/1 locked islandformation could partially contribute to the reduction of the 2/1 thresholds.  相似文献   

6.
Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.  相似文献   

7.
To investigate the interactions between both the static and rotating resonant magnetic perturbations (RMP) and the tokamak plasma, two sets of coils, namely static RMP (SRMP) and dynamic RMP (DRMP), are constructed on the J-TEXT tokamak. SRMP is reconstructed from TEXT-U and mainly produces static m/n = 1/1, 2/1 and 3/1 resonant perturbation field, where m and n are the poloidal and toroidal mode numbers, respectively. DRMP, newly designed and installed inside the vacuum vessel, can generate pure 2/1 RMP. DRMP is also designed to operate in the AC mode and can produce rotating 2/1 RMP which will be used to study the tearing mode control. Due to the effect of the eddy current in the vacuum vessel wall, the amplitudes of the 2/1 component will be attenuated to about 1/3.6 of the DC value when the operation frequency is larger than 500 Hz. However, DRMP can still provide sufficient large rotating 2/1 perturbation for tearing mode related studies.  相似文献   

8.
To further research the response of the tearing mode(TM) to dynamic resonant magnetic perturbation(DRMP) on the J-TEXT tokamak, a modified series resonant inverter power supply(MSRIPS) with a function of discrete variable frequency is designed for DRMP coils in this study. The MSRIPS is an AC–DC–AC converter, including a phase-controlled rectifier, an LC filter, an insulated gate bipolar transistor(IGBT) full bridge, a matching transformer, three resonant capacitors with different capacitance values, and three corresponding silicon controlled rectifier(SCR) switches. The function of discrete variable frequency is realized by switching over different resonant capacitors with corresponding SCR switches while matching the corresponding driving frequency of the IGBT full bridge. A detailed switching strategy of the SCR switch is put forward to obtain sinusoidal current waveform and realize current waveform smooth transition during frequency conversion. In addition, a resistor and thyristor bleeder is designed to protect the SCR switch from overvoltage. Manufacturing of the MSRIPS is completed, and the MSRIPS equipment can output current with an amplitude of 1.5 kA when its working frequency jumps among different frequencies. Moreover, the current waveform is sinusoidal and can smoothly transition during frequency conversion. Furthermore, the transition time when the current amplitude rises from zero to a steady state is less than 2 ms during frequency conversion. By using the MSRIPS, the expected discrete variable frequency DRMP is generated, and the phenomenon of the TM being locked to the discrete variable frequency DRMP is observed on the J-TEXT tokamak.  相似文献   

9.
An external resonant magnetic perturbation (RMP) field, which is an effective method to mitigate or suppress the edge localized mode (ELM), has been planned to be applied on the ELM control issue in ITER. A new set of magnetic perturbation coils, named as high m coils, has been developed for the EAST tokamak. The magnetic perturbation field of the high m coils is localized in the midplane of the low field side, with the spectral characteristic of high m and wide n, where m and n are the poloidal and toroidal mode numbers, respectively. The high m coils generate a strong localized perturbation field. Edge magnetic topology under the application of high m coils should have either a small or no stochastic region. With the combination of the high m coils and the current RMP coils in the EAST, flexible working scenarios of the magnetic perturbation field are available, which is beneficial for ELM control exploration on EAST. Numerical simulations have been carried out to characterize the high m coil system, including the magnetic spectrum and magnetic topology, which shows a great flexibility of magnetic perturbation variation as a tool to investigate the interaction between ELM and external magnetic perturbation.  相似文献   

10.
Gyrokinetic simulations of DIII-D tokamak equilibrium find that resonant magnetic perturbation (RMP) drives a neoclassical non-ambipolar electron particle flux, which causes a rapid change of equilibrium radial electric fields consistent with experimental observations during the suppression of the edge localized mode (ELM). The simulation results provide a support for the conjecture that RMP-induced changes of radial electric fields lead to the enhanced turbulent transport at the pedestal top during the ELM suppression (Taimourzadeh et al 2019 Nucl. Fusion 59 046005). Furthermore, gyrokinetic simulations of collisionless damping of zonal flows show that resonant responses to the RMP decrease the residual level of the zonal flows and damp the geodesic acoustic mode.  相似文献   

11.
The J-TEXT tokamak has been operated for ten years since its first plasma obtained at the end of 2007. The diagnostics development and main modulation systems, i.e. resonant magnetic perturbation (RMP) systems and massive gas injection (MGI) systems, will be introduced in this paper. Supported by these efforts, J-TEXT has contributed to research on several topics, especially on RMP physics and disruption mitigation. Both experimental and theoretical research show that RMP could lock, suppress or excite the tearing modes, depending on the RMP amplitude, frequency difference between RMP and rational surface rotation, and initial stabilities. The plasma rotation, particle transport and operation region are influenced by the RMP. Utilizing the MGI valves, disruptions have been mitigated with pure He, pure Ne, and a mixture of He and Ar (9:1). A significant runaway current plateau could be generated with moderate amounts of Ar injection. The RMP has been shown to suppress the generation of runaway current during disruptions.  相似文献   

12.
The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet(VUV) range, as heating power increasing in the Experimental Advanced Superconducting Tokamak(EAST). The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas. Therefore, in this study, a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST. One Seya-Namioka VUV spectrometer(McPherson 234/302) is used in the system, equipped with a concave-corrected holographic grating with groove density of 600 grooves mm~(–1). Impurity line emissions can be observed in the wavelength range ofλ=50–700 nm, covering VUV, near ultraviolet and visible ranges. The observed vertical range is Z=-350–350 mm. The minimum sampling time can be set to 5 ms under full vertical binning(FVB) mode. VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign. Impurity spectra are identified for several impurity species, i.e., lithium(Li), carbon(C), oxygen(O), and iron(Fe). Several candidates for tungsten(W) lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines. Time evolutions of impurity carbon emissions of CII at 134.5 nm and CIII at97.7 nm are analyzed to prove the system capability of time-resolved measurement. The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.  相似文献   

13.
Magnetohydrodynamic(MHD) instabilities are widely observed during tokamak plasma operation. Magnetic diagnostics provide important information which supports the understanding and control of MHD instabilities. This paper presents the current status of the magnetic diagnostics dedicated to measuring MHD instabilities at the J-TEXT tokamak; the diagnostics consist of five Mirnov probe arrays for measuring high-frequency magnetic perturbations and two saddle-loop arrays for low-frequency magnetic perturbations, such as the locked mode. In recent years, several changes have been made to these arrays. The structure of the probes in the poloidal Mirnov arrays has been optimized to improve their mechanical strength, and the number of in-vessel saddle loops has also been improved to support better spatial resolution. Due to the installation of high-field-side(HFS) divertor targets in early 2019,some of the probes were removed, but an HFS Mirnov array was designed and installed behind the targets. Owing to its excellent toroidal symmetry, the HFS Mirnov array has, for the first time at J-TEXT, provided valuable new information about the locked mode and the quasi-static mode(QSM) in the HFS. Besides, various groups of magnetic diagnostics at different poloidal locations have been systematically used to measure the QSM, which confirmed the poloidal mode number m and the helical structure of the QSM. By including the HFS information, the 2/1 resonant magnetic perturbation(RMP)-induced locked mode was measured to have a poloidal mode number m of ~2.  相似文献   

14.
In order to measure boundary electrostatic and magnetic fluctuations simultaneously, a combined Langmuir-magnetic probe (CLMP) has been designed and built on joint-Texas experimental tokamak. The probe consists of 8 graphite probe pins and a 3D magnetic probe, driven by a mechanical pneumatic device. By means of simulation, the shielding effect of the graphite sleeve on the magnetic fluctuation signal is explored, and the influence of the eddy current was reduced by cutting the graphite sleeve. In the experiment, it has been verified that the mutual inductance of electromagnetic signals can be ignored, and a 70–90 kHz electromagnetic mode is observed around the last closed magnetic surface. The establishment of CLMP provides data for the exploration of the coupling of electrostatic and magnetic fluctuations.  相似文献   

15.
Pellet injection is an attractive technology for core-fueling and magnetohydrodynamic study in magnetic-confinement fusion devices like tokamaks and stellarators. It can inject solid hydrogen/deuterium pellets into the plasma with deeper density deposition compared with other fueling methods, such as gas puffing. A three-barrel H2 pellet injection system was installed on the J-TEXT tokamak and experiments were carried out. The pellets are formed in three barrels cooled by a cryocooler and compressor system at around 9 K, and are 0.8 mm/1 mm diameter and 0.8 mm length. The pellet is launched by helium propellant gas and injected from the low-field side of the plasma. The normal range of pellet speed is 210–310 m s−1 for different propellant gas pressures. Due to the three-barrel structure, the number of injected pellets can be adjusted between one and three. Pellets can be launched sequentially with arbitrary time intervals, which enables flexible applications. The results of the experiments show that pellet fueling efficiency can reach 50%. The energy confinement time increased by about 7.5‒10 ms after pellet injection.  相似文献   

16.
High-density experiments in the high-field-side mid-plane single-null divertor configuration have been performed for the first time on J-TEXT.The experiments show an increase in the highest central channel line-averaged density from 2.73 x 1019 m-3 to 6.49 x 1019 m-3,while the X-point moves away from the target by increasing the divertor coil current.The corresponding Greenwald fraction rises from 0.50 to 0.79.For the impurity transport,the density normalized radiation intensity(absolute extreme ultraviolet and soft x-ray)of the central channel density decreased significantly(>50%)with an increase in the plasma density.To better understand the underlying physics mechanisms,the 3D edge Monte Carlo code coupled with EIRENE(EMC3-EIRENE)has been implemented for the first time on J-TEXT.The simulation results show good agreement with the experimental findings.As the X-point moves away from the target,the divertor power decay length drops and the scrape-off layer impurity screening effect is enhanced.  相似文献   

17.
Three spectroscopic systems have been developed for the study of light impurity particle transport in the HT-7 tokamak. A visible multi-channel spectroscopic system (VIS) is used to obtain the brightness distribution of the line emission from ionized light impurities. The profile of Zeff(r) has been obtained from the visible multi-channel bremsstrahlung measurement (VB). The system with a rotating hexahedral mirror for space-time resolved spectroscopy measurement from ultraviolet to visible (UV) can provide the brightness distribution of two different emission lines of the light impurities simultaneously. The emissivities by these multi-channel measurements can be obtained by Abel inversion. The measurement was performed in typical OH discharges in the HT-7 tokamak. The carbon particle transport was analyzed. The feasibility of these diagnostic systems for the impurity particle transport study is clearly demonstrated.  相似文献   

18.
The toroidal component of the velocity for geodesic acoustic modes (GAMs) is first demonstrated.Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study.A significant peak at the GAM frequency is observed in Mach number fluctuations.The toroidal velocity for the GAMs is estimated as ~10-100 m s-1 and increases with the poloidal velocity.The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0.With higher safety factors q,the ratio almost does not change with decreasing the safety factor,whereas it goes up sharply at low q.The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated,and are higher than those between radial electric fields and Mach number fluctuations.  相似文献   

19.
The effect of resonant magnetic perturbation(RMP) on boundary turbulence and transport in J-TEXT plasma is experimentally investigated.Edge plasma fluctuations in discharges with and without the(m/n=3/1) RMP currents are diagnosed by using Langmuir probe arrays.It was found that fluctuations in the edge and scrape-off layer(SOL) regions decrease with the application of a 6 kA RMP.The broadband turbulence at the radial location of ρ~0.9 which has a characteristic frequency of 40-150 kHz was strongly suppressed when applying RMP,as was the radial turbulent particle flux and blob transport in the near-SOL region.These experimental findings make RMP a promising method of suppressing and controlling turbulence and particle transport in a plasma boundary.  相似文献   

20.
As a flexible auxiliary heating method,the electron cyclotron resonance heating(ECRH) has been widely used in many tokamaks and also will be applied for the J-TEXT tokamak.To meet requirements of protection and fault analysis for the ECRH system on J-TEXT,signals of gyrotrons such as the cathode voltage and current,the anode voltage and current,etc should be transmitted to the control and data acquisition system.Considering the high voltage environment of gyrotrons,isolation transmission module based on FPGA and optical fiber communication has been designed and tested.The test results indicate that the designed module has strong anti-noise ability,low error rate and high transmission speed.The delay of the module is no more than 5 μs which can fulfill the requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号