共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
基于最小二乘支持向量机的飞机备件多元分类 总被引:1,自引:0,他引:1
飞机后续备件配置直接关系到装备的战备完好率和寿命周期费用,对备件的正确分类是进行备件配置决策的前提。支持向量机是采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的新型机器学习方法,具有出色的学习分类能力和推广能力。研究了新型支持向量机算法-最小二乘支持向量机,设计了基于多元分类的最小二乘支持向量机,在此基础上,建立了飞机备件多元分类模型,并对某机型的备件进行了分类。结果表明,基于最小二乘支持向量机的飞机备件多元分类方法是有效、可行的。 相似文献
4.
5.
随着运营商网络规模的不断增大,网络上所承载的业务种类和数量都出现了飞速增长。在这种情况下,承载业务的服务质量(QoS)难以简单依靠网络管理者提供保障,带有学习能力的智能化网络管理系统将成为未来发展的主流。针对这一背景,提出了一种基于支持向量机的业务QoS评估方案,实现了带有学习能力的自适应的业务QoS评估,通过对实际样本进行分析证明了本方案的有效性。研究内容对未来智能化网管系统的发展有很强的借鉴意义。 相似文献
6.
为确保电网能够安全、平稳地运行,且实现经济、科学地发展,应对其建立中长期的电力需求预测体系。对于传统方法在中长期电量预测时所面临的非线性问题,文中基于深度神经网络的方法,设计了一种电力需求的映射器与预测器,来完成对电力需求数据的自动编码。同时针对预测模型中复杂函数难以取得数值解的问题,通过使用混合支持向量机算法,设计并提出了基于各种模型优点的预测算法,进而实现更为精准的模型预测。最终通过与线性回归器等多种算法的对比实验结果可知,所提算法的收敛性最优,且预测平均绝对误差最低。 相似文献
7.
针对支持向量机(svM)模型不能有效处理海量数据挖掘的问题,提出一种改进的基于主动学习的支持向量机(AL_SVM)方法。该方法首先将训练集随机划分为多个独立同分布的子集,并选择其中一个子集作为初始训练集来训练SVM得到初始分类器和支持向量集,然后根据已经得到的分类器信息在剩余样本集中选择对于分类器改进作用最大的有价值样本。并与已得到的支持向量集合并构成新训练集,以更新分类器,从而在保留重要支持向量信息的前提下,去除大量不重要的支持向量,一定程度上避免了过学习问题,提高了学习效率。实验表明,AL_SVM方法能够在保持学习器泛化能力的同时提高其学习效率。 相似文献
8.
9.
10.
针对投影孪生支持向量机(Projection Twin Support Vector Machine,PTSVM)在训练和求解过程中存在的问题,提出了一类改进的投影孪生支持向量机(Improved PTSVM),简称为IPTSVM.该文首先构造了改进的线性投影孪生支持向量机,然后利用核技巧轻松将其推广到了非线性形式.本文的主要贡献有:(1)提出了投影孪生支持向量机的新模型,克服了原始PTSVM在训练之前需要求解两个逆矩阵的问题;(2)继承了传统SVM(Support Vector Machine)的精髓,利用核技巧直接将线性IPTSVM推广到非线性形式;(3)引入了一个新的参数,可以调节模型的性能,提高了IPTSVM的分类精度.实验结果表明,与PTSVM算法相比较,IPTSVM不仅提高了分类精度,而且克服了PTSVM的一些不足. 相似文献
11.
12.
由于支持向量机( Support Vector Machine,SVM)在处理样本不平衡分布时会有偏向性,使少数类别的分类错误率的上界高于多数样本类别。分析总结了针对该问题当前的研究方法,并指出存在问题。研究分析针对不平衡样本SVM分类识别率的倾向性问题。考虑全局样本信息,提出了3种针对所有样本空间分布距离信息的方法。在UCI数据集上进行实验,结果证明MSEDR-SVM( Mean Sample Euclidean Distance Ra?tio-SVM)能够有效增加少数样本类别的F -值。从而改善标准的SVM只依靠支持向量样本构建分类超平面的局限性。 相似文献
13.
基于SVM的烟叶光谱分级 总被引:3,自引:0,他引:3
文中将基于统计学理论的支持向量机SVM(Support Vector Machine)与红外光谱分析技术结合,以50个烟叶样本作为实验材料,对两类烟叶进行分级。为了获得更好的定性分析结果并且简化网络输入维数,首先利用小波压缩对复杂光谱数据进行预处理。然后通过SVM建立烟叶分级模型。实验中采用高斯径向基函数(RBF)为核函数,根据SVM的不同输入量调整核参数建立最佳SVM模型,实验表明:对训练样本的正确识别率为100%,测试样本正确识别率为93.10%。 相似文献
14.
针对人工检测金属表面缺陷效率低、主观意识强、无法长时间工作等缺点,提出一种基于支持向量机监督检测、分类以及测量的金属表面缺陷的方法,并使用Matlab软件设计一个图形用户界面(GUI),便于检测人员使用.研究中先对工厂采集的图像进行Gabor滤波和对比度增强的前处理.然后使用方向梯度直方图(HOG)和灰度共生矩阵(GL... 相似文献
15.
提出一种基于熵值加权支持向量机(SVM)的火焰检测方法.采用三帧差分算法对视频前景提取(VIBE)算法进行改进,并提出TH-VIBE前景检测算法,提升疑似火焰区域获取的准确率与完整性;利用熵值加权降低纹理特征、面积变化特征、圆形度特征、灰度特征等特征数据的冗余程度并建立熵值加权火焰识别模型,提升火焰识别速率与准确率;最... 相似文献
16.
新一代心电图(Electrocardiography,ECG)系统中,可以使用可穿戴设备来监测人体生理信号.心电图信号是一种生物医学信号,基本上与人体心脏的电活动相对应,根据其波形可以初步判断人体是否存在疾病.本文首先对ECG信号进行了预处理,然后使用自适应阈值对QRS波进行定位,最后使用支持向量机对心电信号进行分类.... 相似文献
17.
鉴于当前的睡眠监测设备存在佩戴复杂、设备昂贵、功能单一和检测方法不合理等情况,设计了一种多传感器数据融合的睡眠监测系统.本系统以STM32F407ZGT6为核心主控芯片,通过可穿戴式背心传感器将所采集到的人体特征信号进行处理、存储和发送到手机App端,针对单一传感器检测可靠性较差的特点,本系统采用了多传感器进行采集分析... 相似文献
18.
睡眠过渡状态是指人从清醒过渡到睡眠这段过程中脑所历经的认知状态.由于入睡的快慢、失眠的发生与睡眠过渡过程中的脑状态密切相关,因此实时监测评估睡眠过渡中的脑状态,对于研究入睡的历程、失眠的机理及其失眠的解除,都具有重要的意义.为了能准确测评睡眠过渡状态,又不影响被测者的睡眠过渡过程,研发出以ARM微控制器和μClinux实时操作系统为基础的"微型嵌入式计算机".由于它能独立于环境完成测控所需要的以下各项操作:发生刺激并控制其特性,测量并记录被试者行为反应信息,因此保证了测控的无干扰性. 相似文献
19.
复杂时间序列是高度复杂的非线性动态系统,传统的支持向量机方法无法对单一点值进行精确的预测,因此,对时序波动区间的预测更有参考意义。基于此,提出一种基于加权支持向量机的时序波动范围预测算法。研究中以股票指数为例,首先将原始价格数据进行模糊信息粒化,并针对金融时间序列的特点,利用改进后的加权支持向量机对粒化后的价格数据作出回归分析,同时对参数进行优化。最后对3大股票指数的预测实验验证结果表明,该方法能对复杂时间序列的波动范围进行有效的预测,并且精度优于标准支持向量机模型。 相似文献