首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
由于IGBT经常工作于高频状态,因此对其关断过电压的抑制就显得尤为重要。对IGBT关断过电压的产生机理进行了分析,对常用的3种缓冲电路进行简单介绍,并且重点对RC缓冲电路的工作原理及参数确定进行了理论分析。搭建了用于测试IGBT动态特性的电路模型,并通过Multisim对RC缓冲电路进行了仿真与分析,验证了RC缓冲电路的吸收特性。  相似文献   

2.
IGBT缓冲电路的设计   总被引:4,自引:1,他引:4  
介绍了大功率IGBT逆变器绘冲电路的设计方法,并给出一些实用的缓冲电路型式和参数。  相似文献   

3.
基于新型混合式断路器的IGBT缓冲电路研究   总被引:1,自引:2,他引:1  
分析了新型混合式断路器的IGBT开关特性,在总结3种传统IGBT缓冲电路的基础上,提出一种优化的适合于新型混合式断路器的IGBT缓冲电路。该电路能在不降低吸收过电压效果的基础上,改变充、放电回路的电容,使放电时间跟随电容改变而改变,满足具体主电路对IGBT导通时间变化的要求和满足不同IGBT开关频率的要求。通过仿真和理论分析证明了该优化缓冲电路的有效性和适用性。  相似文献   

4.
孙强  周永明 《电工技术》2002,(12):30-32
分析了IGBT逆变器缓冲电路的工作原理,推导出缓冲电路各元件的参数计算公式,预见了缓冲电路在关断过程中的2次电压尖峰,并对其仿真验证。  相似文献   

5.
对三电平IGBT变流器两种缓冲电路的研究   总被引:16,自引:6,他引:16  
总结了三电平变流器的几种缓冲电路,分析了IGBT的失效特点,并进一步提出了两种应用于三电平IGBT变流器的新型缓冲电路。这两种缓冲电路有效地钳制了每个IGBT关断时的dv/dt和过电压。其中第1种缓冲电路最简单,没有内外IGBT电压不均现象。实验波形证实,这两种电路都是可行的。  相似文献   

6.
绝缘栅双极晶体管(IGBT)逆变器多应用在变频器、开关电源和分布式发电系统等工作频率较高的场合。逆变器工作频率越高,缓冲电路吸收的过电压能量在开关器件下一次关断动作前放电完毕的时间就越短。提出了一种改进型IGBT逆变器缓冲电路,通过改变放电回路的放电电容,可以满足IGBT逆变器在高频应用下的要求。通过理论分析和电路仿真,证明了该改进型缓冲电路的有效性和适用性。  相似文献   

7.
由于线路中杂散电感以及IGBT反并联二极管浪涌电压的影响,IGBT在关断过程中会产生过电压尖峰。通过对IGBT关断过程的分析,提出了一种新的IGBT过电压抑制方法,并通过pspice仿真以及实验验证了新的过电压抑制方法的正确性和优势。  相似文献   

8.
绝缘栅双极型晶体管IGBT综合了GTR和MOSFET的优点,近年来得到了广泛的应用,但是受限于耐压等级,单个IGBT高压大功率电能变换场合还不能满足需求,而串联使用是一种较好的解决方案。在串联使用中为了抑制器件关断过程中产生浪涌过冲,仍然需要吸收电路进行保护。通过对比分析详细阐述了RCD吸收电路在IGBT串联中的使用优势,并给出了参数选取的原则,同时分析了RCD吸收电路对器件动、静态电压均压的影响,并通过实验予以了验证。  相似文献   

9.
通过对斩波器中缓冲电路工作过程的分析,了一般缓冲电路的模型。根据这个模型,分析了中占箍位式(NPC)三电平变流器中内外绝缘册双极型晶体管(IGBT)电压不平衡的原因。并指出电压不平衡是由于NPC三电平的特殊结构和电路中的杂散电感造成的。实验波形证明了模型的正确性和分析的有效性。  相似文献   

10.
魏峰  李立 《电源世界》2013,(6):32-35
di/dt缓冲电路中较高的开通电感使IGBT短路特性在两种短路模式下有明显的不同,由于短路开通时集电极-发射极电压的急剧减小,IGBT短路模式一中的特性变得格外重要,而且还引起VCE变陡峭的去饱和过程。本文描述了该失效模式中IGBT特性,并给出了快速检测这种失效的两种备选方案。利用大面积高压压封IGBT模块及单IGBT芯片进行验证测试。  相似文献   

11.
分析了高电压电路中IGBT串联运行时导致端电压静态和动态不均衡的各种原因.设计了一种有源缓冲均压电路,并通过MATLAB/SIMULINK进行了仿真研究,仿真结果验证了所设计电路的可行性.  相似文献   

12.
高压IGBT与二极管构成IGBT模块已经广泛应用于柔性直流输电技术领域。然而现有仿真研究难以模拟IGBT模块中IGBT与二极管各自详细开关暂态特性及相互影响,因此提出一种适用于电路仿真的IGBT模块暂态模型及其参数通用提取方法。模型采用机理推导、电气等效、曲线拟合等方法在PSCAD、SABER等电路仿真平台实现,无需获取器件底层参数和求解复杂物理方程,不仅可以实现电路仿真中IGBT模块的各种运行状态,而且可以在纳秒级步长下模拟其电压电流尖峰、拖尾电流、米勒平台等开关暂态特性。通过与SABER中通用模型仿真结果及实验实测波形对比分析,验证了IGBT模块暂态模型和参数提取方法的正确性和通用性,为进一步将模型应用于柔性直流输电系统仿真、电磁干扰及损耗分析、控制策略等研究打下基础。  相似文献   

13.
本文在分析了传统IGBT逆变器吸收电路特点和工作原理的基础之上,结合IGBT在高频应用场合的开关特性,对传统IGBT逆变器吸收电路进行了改进.经过改进的IGBT逆变器吸收电路能够通过改变放电回路的放电电容,缩短吸收电容放电时间,在不降低吸收过电压效果的基础上,提高IGBT的工作频率,满足了IGBT逆变器在高频应用下的要求.最后,通过理论分析和电路仿真,验证了改进型吸收电路的有效性和适用性.  相似文献   

14.
提出了采用一种并行自校正多目标遗传算法,对大功率CTATCOM装置的IGBT吸收电路参数选型进行优化,通过设计实例表明,这种选优方法设计的吸收电路可靠性高,工程应用价值大。  相似文献   

15.
非最小电压应力无源无损缓冲电路的研究   总被引:2,自引:0,他引:2  
伍瑶  张兴  周小义 《电力电子技术》2007,41(3):49-50,53
研究了适用于PWM变换器的非最小电压应力(Non Minimum Voltage Stress,简称NMVS)无源无损缓冲电路.它与有源软开关相比具有结构简单,控制方便的优点.与最小电压应力(Minimum Voltage Stress,简称MVS)的无源无损缓冲电路相比,NMVS无源无损缓冲电路更具有电流应力小,软开关范围更广,效率高等突出优点.  相似文献   

16.
采用Crowbar保护电路可以极大地提高双馈式风电系统的低电压穿越能力(LVRT)。建立了双馈风力发电机(DFIG)的数学模型,对IGBT型Crowbar保护电路关键参数—卸能电阻最优值范围进行研究。并通过MATLAB/Simulink搭建了变速恒频DFIG风力发电系统模型,仿真表明当电网电压大幅度跌落时采取Crowbar保护电路的必要性。  相似文献   

17.
唐杰  罗安  王跃球 《高电压技术》2008,34(3):598-602
配电静止同步补偿器(DSTATCOM)的可靠性与主电路功率开关器件的驱动和保护密切相关,DSTAT-COM运行中的诸多故障很大程度上与主电路功率开关器件有关。为了使功率开关器件稳定、可靠的工作,讨论并设计了DSTATCOM主电路功率开关器件IGBT的驱动电路和吸收保护电路。驱动电路采用集成智能驱动模块2SD315A,该模块集驱动、隔离、保护为一体且结构简单、功能强大、使用方便,非常适合于实际装置的开发。给出了利用2SD315A设计驱动电路的详细过程并为2SD315A设计了可靠的上电复位电路吸收保护电路采用RCD型电路,介绍了RCD型吸收保护电路的工作原理。根据RCD型吸收保护电路的工作原理和吸收保护电路安全可靠工作的目的建立了电路参数优化设计的数学模型。该模型中以功率开关器件承受的浪涌电压最小、放电时间常数最小和投资成本最小为目标函数。然后通过并行自校正多目标遗传算法优化吸收保护电路参数,给出了一个设计实例。实验装置的实际运行证明:所设计的IGBT驱动保护电路性能优良、可靠性高,对其它同类型的电力电子装置有较好的借鉴作用。  相似文献   

18.
智能化IGBT驱动电路研究   总被引:8,自引:0,他引:8  
研究并设计了一种基于复杂可编程逻辑器件(CPLD)的智能化IGBT驱动电路.该电路由CPLD实现各种控制、保护逻辑.驱动电路的高、低电平驱动方式可通过改写CPLD中VHDL源代码来实现.同时,该电路可以选择两路直接驱动和桥臂互补驱动两种工作模式.电路具有开通盲区设置,死区时间设置功能,短路保护运用软降栅压结合软关断技术,软降栅压时间,软关断斜率可通过外接电路自由整定.电路本身自带隔离驱动电源.试验证明该电路具有良好的驱动及保护能力.  相似文献   

19.
高压IGCT缓冲电路的仿真与实验研究   总被引:1,自引:0,他引:1  
针对6kV/1000kW高压变频器中集成门极换流晶闸管(Integnated Gate Commutation Thyristor,简称IGCT)的串联缓冲电路进行了设计.在分析串联缓冲电路的同时,计算了吸收电容和吸收电阻的取值范围.而后,对缓冲电路进行了PSIM仿真和试验,通过仿真和试验波形的比较,验证了缓冲电路的工作效果.结果表明,吸收电容和吸收电阻的取值合适,能够对IGCT起到很好的保护.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号