首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
基于改进的均值漂移算法的目标跟踪   总被引:1,自引:0,他引:1  
提出了一种基于目标颜色特征的改进的均值漂移算法,对符合颜色模板的目标点不论其在直方图中的概率大小,都赋予相同的最大权值,使目标最大限度地成为密度极值区,以克服干扰影响,并提出了一种分块检测遮挡算法,遮挡期间不更新颜色模板,以保证遮挡后恢复准确的跟踪。实验结果表明该算法具有较强的鲁棒性,能有效实现复杂场景下的目标跟踪。  相似文献   

2.
视角变化往往会引起目标外观特征的变化,基于单一颜色直方图模型的均值漂移跟踪算法往往不能适应这种变化。本文在对连续自适应均值漂移算法深入分析的基础上,提出利用目标外观信息的先验知识,对其建立多个颜色分布模型。每帧跟踪结束后,算法都会根据当前的目标特征和周围环境从多个模型的凸组合中选出最有利于下一帧跟踪的参考模型。实验结果表明,该算法能很好地适应目标外观的变化,且计算代价不大。  相似文献   

3.
基于均值漂移算法和粒子滤波算法的目标跟踪   总被引:4,自引:0,他引:4  
将均值漂移算法和粒子滤波算法分别做出改进后进行有效结合.在非遮挡和不严重遮挡情况下,采用改进的均值漂移算法,在严重遮挡情况下,采用改进的粒子滤波算法,并在遮挡结束后验证正确的跟踪是否得到恢复.提出有效的分块检测遮挡算法,遮挡期间颜色模板不更新.实验结果表明该算法具有较好的实时性和鲁棒性,能有效实现复杂场景下的目标跟踪.  相似文献   

4.
孔军  汤心溢  蒋敏  葛运建 《计算机工程》2011,37(22):164-167
为在图像对比度较低、相似目标过多等情况下较好地实现目标跟踪,提出一种基于多尺度特征提取的均值漂移跟踪算法.前一帧目标区域的特征点经匹配得到后续帧目标区域的特征点,利用所得特征点集的中心坐标修正均值漂移搜索窗位置,以此为约束条件,减小均值漂移迭代产生的偏差.实验结果表明,该算法可以提高跟踪精度、鲁棒性及实时性.  相似文献   

5.
基于背景提取和扩展均值漂移算法的目标跟踪   总被引:3,自引:1,他引:2       下载免费PDF全文
通过在静态背景模型下利用自适应背景提取和扩展均值漂移算法相结合的方法对人机交互式的目标跟踪作了进一步的改进。首先利用自适应的背景提取算法从带有运动目标的复杂背景中构建背景图,并提取出运动目标轮廓。在跟踪模块,在均值漂移算法的基础上加入协方差得到的扩展均值漂移可以很好地解决传统均值漂移算法在跟踪过程中因为目标的形状或大小改变而导致跟踪的框架偏离目标的问题。实验结果表明,该算法能够较好地实现自动、实时、较准确的跟踪目标效果。  相似文献   

6.
基于均值漂移与卡尔曼滤波的目标跟踪算法   总被引:8,自引:1,他引:8  
均值漂移算法在目标跟踪过程中没有利用目标的运动方向和速度信息,在目标受到干扰时容易跟踪失败,而Kalman滤波能够较为准确地预测目标的速度和位置。因此,提出了一种结合均值漂移与Kalman滤波的跟踪算法,使用Kalman滤波对目标运动速度和空间位置进行预测。根据干扰的不同情况,使用不同的比例因子将两算法的跟踪结果线性加权得到目标的最终位置。实验结果表明该算法是可行有效的。  相似文献   

7.
传统连续自适应均值漂移人脸跟踪算法,仅使用了人脸的色调特征,容易受到光照及相同背景色影响,为此,提出将人脸颜色和表示线端、角点、边界相关的纹理信息相结合共同构成人脸特征的CAMSHIFT算法。首先,采用带有权重的RGB颜色空间创建归一化的人脸直方图模型;然后,在视频图像中进行目标人脸直方图投影,同时进行纹理检测,保留纹理信息的人脸颜色特征,形成概率密度分布图;最后,由Mean Shift算法从当前位置迭代寻找直至定位目标人脸。实验结果验证了该算法可以抵御同色背景和部分遮挡的影响。  相似文献   

8.
基于颜色纹理直方图的带权分块均值漂移目标跟踪算法   总被引:1,自引:0,他引:1  
融合了传统的颜色直方图并基于局部二元模式表示的纹理特征来表示跟踪目标,提出一种基于颜色纹理直方图的带权分块均值漂移目标跟踪算法.为了更好地解决目标遮挡和姿势改变的问题,在跟踪过程中将跟踪目标分割成多个互不遮挡的矩形分块,对每一个矩形分块独立采用基于背景权重的均值漂移算法,并结合每一个分块求得的最佳目标位置得到目标物体在...  相似文献   

9.
在严重遮挡时,时空上下文STC(Spatio-Temporal Context)算法对目标位置的判断是正确的,而均值漂移MS(Mean Shift)算法对目标位置的判断会发生很大幅度的抖动,甚至跟踪错误目标。在遮挡结束后,时空上下文算法很难重新跟踪到正确目标,而均值漂移算法可以重新检测到跟踪目标。结合二者的优缺点,提出基于均值漂移算法和时空上下文算法的目标跟踪算法MSandSTC。该算法主要解决目标被严重遮挡的问题。在许多具有挑战性的数据集上的实验表明所提算法具有较好的实时性和鲁棒性。  相似文献   

10.
针对固定搜索窗口均值漂移算法在目标运动速度过快或目标尺度发生变化而导致跟踪失败的问题,提出一种与卡尔曼滤波相结合的自适应窗口跟踪算法。首先用卡尔曼滤波算法对运动目标进行预测及更正,设定感兴趣区域,并利用均值漂移算法确定搜索窗口大小和位置,同时结合Bhattacharyya系数进行目标定位,实现视频中目标跟踪。通过对比分析和实验结果,改进算法对目标尺度发生变形时具有较好的鲁棒性和准确性。  相似文献   

11.
邹青志  黄山 《计算机科学》2017,44(3):278-282
针对Mean Shift算法难以跟踪快速运动目标、算法迭代次数多以及耗费时间长的问题,提出了一种基于Mean Shift的快速运动目标检测方法,该方法结合帧差法并融合背景信息来快速检测运动目标;同时提出一种新的相似性度量方法进行初步检测,排除干扰并快速选出符合标准的目标以进行Mean Shift匹配,找出最佳目标。该方法不仅减少了传统方法的迭代次数,缩短了算法所需时间,而且在跟踪实验中取得了较好的跟踪效果,提升了算法的鲁棒性。  相似文献   

12.
13.
传统均值漂移跟踪算法都是基于单个特征空间,这不能较好地解决特征相似目标对跟踪的干扰.文中归纳多种具有分布特性的局部性特征,并对各种特征的区分能力提出具体的测度方法,使得特征的选择能够自适应.并在分析均值漂移算法中权重值计算的基础上,提出在多特征空间下,依据特征区分能力赋予相应的权重值,进而融合至均值漂移算法中.改进算法能够有效利用各种特征,使其相互补足,提高目标跟踪的鲁棒性.对于视频序列的实验表明,改进算法能够对受干扰的目标进行有效的实时跟踪.  相似文献   

14.
为了寻找一种可以实际运用到学校监控系统的目标跟踪算法,文中对基本MeanShift算法进行描述,并阐述算法的实际意义。MeanShift虽然以其不需要参数、不需要穷尽搜索区域等特性可以较好地实现目标跟踪,但是同时其也有不足,让其在某些跟踪条件下达不到很好的效果。为了使MeanShift目标跟踪算法满足实际应用需求,通过添加核函数和增加权重的方式对基础MeanShift算法进行扩展,并在分析MeanShift算法的不足之后,提出一种MeanShift与Kalman滤波相结合的目标跟踪算法。通过学校的视频监控平台对提出算法进行验证,实验结果表明,该算法可以有效地对目标进行跟踪。  相似文献   

15.
喻旭勇  王直杰 《计算机工程》2014,(1):228-231,235
为实现道路交通的车辆自动跟踪,提出一种基于灰度触发的Mean Shift自动跟踪算法。利用改进的高斯混合模型进行前景检测,有效抑制光照突变对于目标检测的影响,保证触发区域的灰度干扰降低到最少。设计基于虚拟区域灰度变化的触发方式,通过捕获虚拟触发区域内的灰度局部峰值,扩展目标搜寻区域进行运动车辆的锁定,进而实现核函数宽度自适应调整的Mean Shift跟踪。实验结果表明,该方法能准确实现自动触发跟踪,触发精度较高,具有较好的实用价值。  相似文献   

16.
一种基于纹理模型的Mean Shift目标跟踪算法   总被引:6,自引:0,他引:6  
在Mean Shift跟踪算法中,目标表示方法对跟踪性能有着重要影响.本文以局部二值模式(LBP)纹理模型作为研究对象,分析LBPi,1ri的9种纹理模式所表示的图像特征,提出用LBP8,1ri纹理模型中表示边界和角的5种基本模式表示目标的算法,称为FLBP8,1,并将FLBP8,1模式成功嵌入Mean Shift算法进行目标跟踪.FLBP8,1有效结合目标的边界及其纹理特征,能够自动提取目标的关键模式点,利用少量的关键点准确表示目标,因此计算复杂度较低.实验结果表明,在复杂的条件下,本文方法比基于颜色的表示法在目标表示的准确性和跟踪性能上均有明显提高.  相似文献   

17.
邹青志  黄山 《计算机科学》2017,44(4):306-311
提出一种使用改进型LTP特征与颜色特征融合的均值漂移(Mean Shift)目标跟踪算法,该算法解决了均值漂移目标跟踪算法在变化的光强场景下跟踪难的问题。首先针对LTP模式过多的问题引入旋转不变的LTP模式,然后提出动态计算LTP算子阈值的方法,之后将改进的LTP特征与颜色特征通过自适应函数融合起来并嵌入均值漂移算法中。在变光强场景下与传统目标跟踪算法相比较,此算法跟踪结果明显优于其他算法,且鲁棒性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号