首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the corrosion of outdoor bronzes has been extensively studied for the last decades, there is no quantitative correlation of corrosion products to microclimatic factors. The present work aims to demonstrate how Principal Component Analysis (PCA) can serve this purpose. Thirty corrosion product samples were collected from the bronze monument of Theodoros Kolokotronis (Nafplio, Greece) and analysed using X-Ray Diffractometry (XRD). The quantitative XRD data together with data on surface orientation and exposure to rain or wind were treated by PCA and three distinct groups were found. Each group includes samples of similar composition and microclimate characteristics showing that PCA may give useful information on corrosion mechanisms.  相似文献   

2.
This work aims to characterize corrosion products formed on copper samples exposed to synthetic rainwater of Rio de Janeiro and São Paulo. XRD and XPS were employed to determine their composition, while electrochemical techniques were used to evaluate their protective properties. XRD and XPS indicated the thickening of the corrosion layer with time. Electrochemical results showed that the protectiveness of the corrosion layer depends on the solution composition. Based on our findings a corrosion mechanism for copper in simulated rainwater is proposed where the role of NH4+ ions in the cuprite layer partial regeneration is taken into account.  相似文献   

3.
Ex-situ X-ray diffraction measurements of a small amount of samples extracted from wet corrosion products freshly formed on a pure iron and iron-2 mass% silicon surfaces have been conducted using synchrotron radiation for clarifying the formation process of corrosion products. The results showed that γ-FeOOH was formed on the outer side of wet corrosion products formed on the surface of the pure iron by sodium chloride solution, while γ-FeOOH, α-FeOOH, Fe3O4, and green rusts were formed on the inner side. On the other hand, in comparison to the case of the pure iron, a significant formation of β-FeOOH was observed in the iron-silicon alloy. Influences of silicon alloying on corrosion products formed by aqueous solution containing sulfate ions were also observed. Furthermore, in-situ diffraction measurements by a conventional X-ray source were conducted for analyzing corrosion products formed on the pure iron and iron-silicon alloy surfaces by cyclic exposure to wet and dry atmospheres. The results obtained by the in-situ diffraction and ex-situ diffraction measurements on the corrosion products were consistent.  相似文献   

4.
A thin layer electrochemical cell was successfully developed to study the atmospheric corrosion behavior of copper film in printed circuit board (PCB-Cu) under thin electrolyte layer (TEL) and direct current electric field (DCEF) by electrochemical impedance and electrochemical noise analysis. The electrochemical measurements and SEM morphologies after corrosion test indicate that DCEF decreases the corrosion of PCB-Cu under TEL. The corrosion rate and probability of pitting corrosion of PCB-Cu under DCEF decrease due to the electric migration of aggressive Cl ion out of working electrode surface.  相似文献   

5.
Copper plates were exposed under sheltered outdoor conditions for up to one year, starting in September 2001 in Musashino City, Tokyo, a suburban area. Following various periods of exposure, the patinas on the plates were characterized to investigate their evolution by using X-ray fluorescence analysis, X-ray diffraction, field emission scanning electron microscopy, and glow discharge optical emission spectroscopy. The difference in the roles of sulfur and chlorine in the early stages of copper patination were identified by analyzing the depth profiles of these two elements. Sulfur was found on top of the patina as cupric sulfates such as posnjakite (Cu4SO4(OH)6 · H2O) or brochantite (Cu4SO4(OH)6). Brochantite appeared only after 12 months of exposure. In contrast, chlorine was found on the surface after only one month of exposure. It gradually penetrated the patina as the exposure period lengthened, forming copper chloride complexes. Chloride ions accumulated at the patina/copper interface, forming nantokite (CuCl), which promoted corrosion.  相似文献   

6.
There is a growing trend in the automotive industry to reduce vehicles weight so as to increase fuel efficiency and therefore reduce CO2 emissions. For many automotive components such as springs, weight reduction is sought through an increase in the mechanical properties (allowing smaller components size).For ultra high strength springs, a good corrosion resistance becomes essential to avoid surface damage that will be detrimental to the corrosion-fatigue resistance. Corrosion-fatigue failures indeed often initiate on surface defects caused by corrosion in service (corrosion pits). Therefore, while of moderate importance in conventional spring steels, the corrosion resistance of ultra high strength spring steels is of primary importance.Fine changes in steel chemical composition can have an important effect on corrosion resistance. To understand the individual action of each element on the corrosion resistance of spring steels, corrosion products formed on samples exposed to NaCl environments were characterized using Raman spectroscopy, in a purposely designed experimental tool that allows mapping of corrosion products on the steel surface (by nature and mass fraction).Different steel grades were thus characterized after accelerated corrosion tests, and a clear correlation was established between weight loss and the nature of the corrosion products.  相似文献   

7.
Copper scales formed over 6-months during exposure to ground, surface and saline waters were characterized by EDS, XRD and XPS. Scale color and hardness were light red-brown-black/hard for high alkalinity and blue-green/soft for high SO4 or Cl waters. Cl was present in surface or saline copper scales. The Cu/Cu2O ratio decreased with time indicating an e transfer copper corrosion mechanism. Cu2O, CuO, and Cu(OH)2 dominated the top 0.5-1 A° scale indicating continuous corrosion. Cu2O oxidation to CuO increased with alkalinity, and depended on time and pH. Total copper release was predicted using a Cu(OH)2 model.  相似文献   

8.
Much information is available on the atmospheric corrosion of copper and patina formation mechanisms in the short, mid and even long term. However, studies of the structure and morphology of patina layers are less abundant and mostly deal with patinas formed in the atmosphere over a small number of years. The present study concentrates on the structure and morphology of corrosion product films formed on copper after long-term atmospheric exposure (13-16 years) in five Spanish atmospheres of different types: rural, urban, industrial and marine (mild and severe). Characterisation has been performed by X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Long-term copper corrosion is higher in industrial and marine atmospheres and lower in rural and urban atmospheres. In all cases a decrease in the corrosion rate with exposure time is observed. The formation of antlerite [Cu3SO4(OH)4] is seen in more acidic conditions and in specimen areas subject to a high time of wetness. The presence of nantokite (CuCl), which is not generally mentioned in field studies, has been detected under the cuprite layer very close to the base copper.  相似文献   

9.
The mechanism of corrosion product flaking on bare copper sheet and three copper-based alloys in chloride rich environments has been explored through field and laboratory exposures. The tendency for flaking is much more pronounced on Cu and Cu–4 wt%Sn than on Cu–15 wt%Zn and Cu–5 wt%Al–5 wt%Zn. This difference is explained by the initial formation of zinc and zinc–aluminum hydroxycarbonates on Cu15Zn and Cu5Al5Zn, which delays the formation of CuCl, a precursor of Cu2(OH)3Cl. As a result, the observed volume expansion during transformation of CuCl to Cu2(OH)3Cl, and concomitant corrosion product flaking, is less severe on Cu15Zn and Cu5Al5Zn than on Cu and Cu4Sn.  相似文献   

10.
The time dependency of the amounts of corrosion products and co-existing adsorbed water on copper in humid air containing SO2 was estimated from a series of in situ time-resolved IR-RAS spectra on the basis of the relations between the band intensities and the mass changes of the corrosion products, which were determined by simultaneous measurement of IR-RAS and QCM. The amounts of both corrosion products increased slowly at the initial stage and later increased rapidly. Although the relative humidity was kept constant, the amount of adsorbed water increased nearly the same behavior as that of corrosion products in the stage of relatively small amounts of corrosion products and later increased rapidly when the amounts of corrosion products increased. In humid air without SO2, sulfite gradually decomposed and some of it changed into sulfate.  相似文献   

11.
A new experimental infrared reflection absorption spectroscopy (IRRAS) set-up for in-situ investigation of corrosion phenomena occurring in the metal–atmosphere interface was developed. It was applied in combination with in-situ tapping-mode atomic force microscopy (TM-AFM) and phase detection imaging (PDI) to study the early stages of corrosion of pure copper and pure zinc as well as to determine the influence of increasing zinc contents in brass. Additionally, ex-situ secondary ion mass spectrometry (SIMS) investigations were carried out on the samples after exposure.The investigations were accomplished in synthetic air with 80% relative humidity (RH) and synthetic air with 80% RH and 250 ppb SO2. The experiments showed that an increase of the zinc content in the brass alloy yields to an increase of the dimension of the corrosion features formed on the metal surface during weathering. Large features on top of smaller features were observed with TM-AFM on the surfaces exposed to SO2-containing humidified air, which could be identified by IRRAS as metal sulphur compounds. Furthermore, an increased amount of physisorbed water on the metal surfaces was determined with IRRAS in dependence of the increasing zinc content in the brass samples.  相似文献   

12.
Methyl 3-((2-mercaptophenyl)imino)butanoate (MMPB) was synthesized as inhibitor compound for copper protection. The molecule was designed with azole, thiol functional groups and carboxylate tail group. The inhibition efficiency was examined in acidic chloride media, by means of various electrochemical and spectroscopy techniques. Electrochemical study results showed that high efficiency of MMPB was mainly related with its capability of complex formation with Cu(I) at the surface. The thiol group also improves the adsorptive interaction with the surface, as the carboxylate groups provide extra intermolecular attraction.  相似文献   

13.
Metallic substrates and rust layers of several hundred year old (y.o.) ferrous artefacts were characterised. Composition, structure and porosity of the rust were analysed by different methods: OM, SEM, EDS, EPMA, XRD, μXRD, SAXS, BET and mercury porosimetry.Several important parameters to describe an old rust layer were determined and measured. These parameters will be used for the modelling of long-term indoor atmospheric corrosion.  相似文献   

14.
The effects of Cl ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer were investigated by cathodic polarization curves and electrochemical impedance spectroscopy. Results indicated that the cathodic process of PCB-Cu corrosion was dominated by the reduction of oxygen and corrosion products. The cathodic current density increased with increasing relative humidity and Cl ion concentration. The corrosion rate was initially dominated by oxygen reduction, but at the later stage of corrosion, the anodic process began to affect the corrosion rate due to the accumulation of corrosion products.  相似文献   

15.
Corrosion products that had been formed on copper and silver plates exposed in Miyake Island, where suffered a volcanic eruption in 2000, were analyzed by X-ray techniques to get better understanding of copper and silver corrosion in harsh environment. The exposure experiment was carried out from September 2004 to April 2005. Many kinds of patina were found on copper such as cuprite (Cu2O), posnjakite (Cu4SO4(OH)6 · H2O), brochantite (Cu4SO4(OH)6), antlerite (Cu3SO4(OH)4), and geerite (Cu8S5). For silver, silver chloride (AgCl) and silver sulfide (Ag2S) were formed. Although the volcanic activity had greatly subsided, the atmospheric corrosion of copper and silver plates exposed on Miyake Island was mainly affected by volcanic gases, wet-dry cycles in the environment, and sea-salt aerosols.  相似文献   

16.
The reactivity of zinc under synthetic zinc patinas and the galvanic coupling in steel/patina/Zn are studied. Zn5(OH)6(CO3)2 and Na2Zn3(CO3)4⋅3H2O inhibit zinc anodic dissolution in NaCl, while Zn5(OH)8Cl2 H2O and Zn4(OH)6SO4 nH2O do not. The galvanic current in steel/patina/NaCl/Zn is smaller as compared to steel/NaCl/Zn. The inhibiting effect decreases with time for Na2Zn3(CO3)4⋅3H2O or Zn4(OH)6SO4 nH2O due to the transformation into Zn(OH)2. In NaHCO3, the polarity between zinc and steel can reverse. The effect of confinement on the cathodic current is stronger than the initial effect of patina which is explained by the instability of the patinas under rapid pH-increase.  相似文献   

17.
The polarization resistance of copper subjected to NaCl and an ammonium sulfate solution under wet/dry cycling conditions was monitored using an EIS impedance technique. The copper samples were exposed to 1 h of immersion using different solutions of pH, temperature and surface orientation and 7 h of drying. The copper plates corroded more substantially on the skyward side than those for a ground ward side. The degree of protection copper oxide provides decrease in an acidic medium (pH 4) more than in a neutral medium (pH 7). The corrosion rate of copper increases rapidly during the initial stages of exposure then decreases slowly and eventually attains the steady state during the last stages of exposure. The corrosion products were analyzed using X-ray diffraction. The corrosion mechanism for copper studied under wet/dry cyclic conditions was found to proceed under the dissolution-precipitation mechanism.  相似文献   

18.
B. Ku?nicka  K. Junik 《Corrosion Science》2007,49(10):3905-3916
The objective of this work was to identify the conditions and mechanisms for stress corrosion cracking (SCC) of a hard copper tube employed in a cooling system. The fractured tube was made of deoxidized high phosphorous copper (Cu-DHP). The identification was performed on the ground of fractography, metallography, residual stress measurements and corrosive environment analysis. It was found that humidity and environment containing ammonium and trace amounts of nitrite and nitrate ions were responsible for initiation of SCC yielding to breakdown of oxide surface layer by pitting. Cracking was found intergranular and perpendicular to circumferential stresses. Stress corrosion crack propagation appeared the most consistent with the oxide rupture mechanism. The findings were discussed in relation to the literature data in order to get a better understanding of cracking behaviour.  相似文献   

19.
Semi-hard tubes of deoxidized high phosphorous copper with different levels of tangential residual stresses have been exposed to nitrite solutions in a laboratory heating circuit. After characterization of investigated materials influence of temperature, location of heating, concentration of solution, electrochemical potential, and atmosphere on stress corrosion cracking susceptibility of those copper tubes has been investigated. Threshold stress for crack initiation has been determined. Maximum duration of experiments was 1 month. Breakthrough time of tubes has been measured as criterion for susceptibility to SCC.To vary stress level in a wider range constant load tests on tubes with different degrees of cold working (annealed, semi-hard, hard) were done by mounting them in a steel frame.Stress corrosion cracks were always intergranular. A tenorite layer covered surface of cracked copper tubes. A reaction scheme for ammonia formation is presented. Necessary conditions for formation of stress corrosion are shown and critically discussed.Results show that intergranular cracking takes place at much lower stress levels below yield strength when compared to literature data on transgranular cracking above yield strength. For transgranular cracking cross slipping and cleavage formation as cracking mechanism is confirmed while for intergranular cracking chemical dissolution of grain boundaries plays a more important role.  相似文献   

20.
The corrosion inhibition properties of newly synthesized 1-(2-pyrrole carbonyl)-benzotriazole (PCBT) and 1-(2-thienyl carbonyl)-benzotriazole (TCBT) in combination with the non-ionic surfactant Triton X-100 (TX-100) on metallic copper were studied in ground water environment and the results were compared with benzotriazole (BTA). Various electrochemical studies such as open circuit potential (OCP), potentiodynamic polarization, ac impedance and cyclic voltammetric (CV) were made. Surface analytical techniques like FT-IR and XRD were also performed. The results indicated that PCBT is a better corrosion inhibitor for copper and the formulation consisting of PCBT and TX-100 offered improved inhibition efficiency (IE) in a synergistic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号