首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A self-healing protective film was prepared on a zinc electrode by treatment in 1 × 10−3 M Ce(NO3)3 at 30 °C for 30 min to form a thin layer of hydrated Ce2O3 and by modification with 114 μg/cm2 of Ce(NO3)3 · 6H2O. The film was dried at 30 °C under a dry atmosphere. After the electrode surface was scratched with a knife-edge crosswise and immersed in an aerated 0.5 M NaCl solution at 30 °C for many hours, polarization measurement of the electrode was carried out in the NaCl solution. The protective efficiency of the film was markedly high, 97.7% at the immersion time, ti=24 h. Neither pit-like anodic dissolution feature nor pit was observed within the scratches at ti=72 h. X-ray photoelectron spectroscopy and electron-probe microanalysis revealed that Ce3+ migrating into the scratches from the film was adsorbed on the hydrated or hydroxylated zinc surface to form a new layer of hydrated Ce2O3 within the scratches, resulting in the self-healing activity of the film for preventing zinc corrosion at the scratched surface.  相似文献   

2.
A self-healing protective film prepared on a zinc electrode by previous treatment in a Ce(NO3)3 solution and coverage with a Na3PO4 layer was improved by the addition of Zn(NO3)2. The protective and self-healing abilities of the films against corrosion of zinc in an aerated 0.5 M NaCl solution were examined by polarization measurements and observation of pit-like anodic dissolution feature (plf) and pit formation after the electrode was scratched with a knife-edge crosswise and immersed in the solution for many hours. The film prepared on the pretreated electrode coated with 9.98 or 19.9 μg/cm2 of Zn(NO3)2 · 6H2O and 55.2 μg/cm2 of Na3PO4 · 12H2O was significantly protective and self-healing against zinc corrosion on the scratched electrode. The protective efficiency of the film was more than 96% in the region of the immersion time between 72 and 360 h. No plf was observed at the scratches after immersion for 120 h. Results of Fourier transform infrared reflection and X-ray photoelectron spectroscopies revealed that the film was composed of Na3PO4, Zn3(PO4)2 and Ce2O3 layers.  相似文献   

3.
A thin, protective film was prepared on a zinc electrode by coverage with a hydrated Ce2O3 layer and 0.0552 mg/cm2 of a Na3PO4·12H2O deposit layer and by drying the layers at 90 °C for 23 h, as has been reported in the preceding paper. This film was highly self-healing at the scratched electrode in an aerated 0.5 M NaCl solution for many hours. The present investigation deals with elucidation on self-healing mechanism of this film by X-ray photoelectron spectroscopy and electron-probe microanalysis. The scratched surface was covered with deposits of Zn(OH)2, ZnO and small amount of Zn3(PO4)2. Both cathodic and anodic processes of zinc corrosion were markedly suppressed by coverage of the scratches with the deposits, resulting in the self-healing activity at the scratched electrode in 0.5 M NaCl.  相似文献   

4.
The EIS technique was used to analyze the electrochemical reaction behavior of Alloy AZ91 in H3PO4/KOH buffered K2SO4 solution at pH 7. The corrosion resistance of Alloy AZ91 was directly related with the stability of Al2O3 · xH2O rich part of the composite oxide/hydroxide layer on the alloy surface. The break down of the oxide layer was estimated to occur mainly on the matrix solid solution phase in Alloy AZ91. The mf capacitive loop arose from the relaxation of mass transport in the solid oxide phase in the presence of Al2O3 · xH2O rich part and from Mg+ ion concentration within the broken area in the absence of Al2O3 · xH2O rich part in the composite oxide structure on the alloy surface. The lf inductive loop had tendency of disappear when the dissolution rate of the alloy decreased as a result of the formation of the protective oxide layer.  相似文献   

5.
The influence of salt deposits on the atmospheric corrosion of high purity Al (99.999%) was studied in the laboratory. Four chloride and sulfate-containing salts, NaCl, Na2SO4, AlCl3 · 6H2O and MgCl2 · 6H2O were investigated. The samples were exposed to purified humid air with careful control of the relative humidity (95%), temperature (22.0 °C), and air flow. The concentration of CO2 was 350 ppm or <1 ppm and the exposure time was four weeks. Under the experimental conditions all four salts formed aqueous solutions on the metal surface. Mass gain and metal loss results are reported. The corroded surfaces were studied by ESEM, OM, AES and FEG/SEM equipped with EDX. The corrosion products were analyzed by gravimetry, IC and grazing incidence XRD. In the absence of CO2, the corrosivity of the chloride salts studied increases in the order MgCl2 · 6H2O < AlCl3 · 6H2O < NaCl. Sodium chloride is very corrosive in this environment because the sodium ion supports the development of high pH in the cathodic areas, resulting in alkaline dissolution of the alumina passive film and rapid general corrosion. The low corrosivity of MgCl2 · 6H2O is explained by the inability of Mg2+ to support high pH values in the cathodic areas. In the presence of carbon dioxide, the corrosion induced by the salts studied exhibit similar rates. Carbon dioxide strongly inhibits aluminum corrosion in the presence of AlCl3 · 6H2O and especially, NaCl, while it is slightly corrosive in the presence of MgCl2 · 6H2O. The corrosion effects of CO2 are explained in terms of its acidic properties and by the precipitation of carbonates. In the absence of CO2, Na2SO4 is less corrosive than NaCl. This is explained by the lower solubility of aluminum hydroxy sulfates in comparison to the chlorides. The average corrosion rate in the presence of CO2 is the same for both salts. The main difference is that sulfate is less efficient than chloride in causing pitting of aluminum in neutral or acidic media.  相似文献   

6.
Chromate-free, self-healing protective films were prepared on a surface of zinc electrode previously treated in a solution of cerium(III) nitrate Ce(NO3)3 by coverage of the surface with a layer of sodium phosphate Na3PO4. The self-healing ability of the film was examined by polarization measurements of the electrode after scratching the surface with a knife-edge crosswise and immersed in an aerated 0.5 M NaCl solution for many hours and by observation of pit formation at the scratches. A thin film containing 0.0552 mg/cm2 of Na3PO4·12H2O prepared on the electrode previously treated in 1×10−3 M Ce(NO3)3 at 30 °C for 30 min and dried at 90 °C for 23 h was highly self-healing and protective against corrosion of zinc in 0.5 M NaCl at the scratches. No pit was detected at the scratches on the electrode coated with this film after immersion for 72 h.  相似文献   

7.
For preparing an ultrathin two-dimensional polymer coating adsorbed on passivated iron, a 16-hydroxyhexadecanoate ion HO(CH2)15CO2 self-assembled monolayer (SAM) was modified with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. Protection of passivated iron against passive film breakdown and corrosion of iron was investigated by monitoring of the open-circuit potential and repeated polarization measurements in an aerated 0.1 M Na2SO4 solution during immersion for many hours. The time required for passive film breakdown of the polymer-coated electrode was markedly higher in this solution than that of the passivated one, indicating protection of the passive film from breakdown by coverage with the polymer coating. The protective efficiencies of the passive film covered with the coating were extremely high, more than 99.9% in 0.1 M Na2SO4 before the passive film was broken down, showing prominent cooperative suppression of iron corrosion in the solution by coverage with the passive film and polymer coating. The polymer-coated surface was characterized by contact angle measurement and electron-probe microanalysis (EPMA). Prevention of passive film breakdown and iron corrosion for the polymer-coated electrode healed in 0.1 M NaNO3 was also examined in 0.1 M Na2SO4.  相似文献   

8.
Y(NO3)3·6H2O-doped ZnO-Bi2O3-based varistor ceramics were prepared using a solid reaction route. The microstructure, electrical properties, degradation coefficient (DV), and dielectric characteristics of varistor ceramics were studied in this paper. With increasing amounts of Y(NO3)3·6H2O in the starting composition, Y-containing Bi-rich, Y2O3, and Sb2O4 phases were formed, and the average grain size decreased. Results also showed that with the addition of 0.16 mol% Y(NO3)3·6H2O, Y(NO3)3·6H2O -doped ZnO-based varistor ceramics exhibit comparatively better comprehensive electrical properties, such as a threshold voltage of 425 V/mm, a nonlinear coefficient of 73.9, a leakage current of 1.78 μA, and a degradation coefficient of 1.7. The dielectric characteristics and lightning surge test also received the same additional content of Y(NO3)3·6H2O. The results confirmed that doping with rare earth nitrates instead of rare earth oxides is very promising route in preparing high-performance ZnO-Bi2O3-based varistor ceramics.  相似文献   

9.
A highly protective and self-healing film of 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 polymer containing sodium silicate (water glass) Na2Si2O5 and cerium(III) nitrate Ce(NO3)3 was prepared on a zinc electrode previously treated in a Ce(NO3)3 solution. The film was examined by polarization measurement of the electrode in an aerated 0.5 M NaCl solution after the electrode was scratched and immersed in the solution for 4-72 h. Self-healing mechanism of the film was investigated by X-ray photoelectron spectroscopy and electron-probe microanalysis for the coated electrode surface after scratched and immersed in the NaCl solution. A passive film composed of Zn(OH)2, ZnSi2O5 and Ce3+-Si2O52− salt or complex was formed on the scratched surface and preferential deposition of Si2O52− compounds occurred at a defect of the passive film where Cl accumulated, resulting in suppression of pitting corrosion at the scratch.  相似文献   

10.
A corrosion mechanism is proposed for Al3Mg2, based on electrochemical tests, XPS, and depth profiling using XPS and ToF-SIMS. After short (∼2 min) solution exposure, the surface consists of a surface film above dealloying. The dealloying is attributed to selective Mg dissolution and the surface rearrangement of Al into islands, although the metallic Al could alternatively be formed by two reduction reactions. The surface film thickness was ∼10 nm. After exposure to ultra-pure water, the composition was AlMg1.3O0.2(OH)5.1 corresponding to Al(OH)3·1.1 Mg(OH)2·0.2MgO. After exposure to 0.01 M Na2SO4, the composition was AlMg0.2O0.4(OH)2.5 corresponding to Al(OH)3·0.1Al2O3·0.2MgO. Longer exposure produced a thicker surface film, more pronounced metallic Al islands and more MgH2. Three possibilities are identified for MgH2 formation. Al(OH)3 formation is attributed to a precipitation reaction. Bulk nanoporous Al3Mg2 formation is predicted to be possible by Mg dealloying of Mg17Al12.  相似文献   

11.
The binary system H2O–Fe(NO3)3 has been investigated at temperature ranging between –25 and 47 °C.The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied at −15 and −25 °C by using a synthetic method based on conductivity measurements which allows all the characteristic points of the isotherms to be determined, and the stable solid phases which appear are respectively: ice, Fe(NO3)3·9H2O, Fe(NO3)3·6H2O, Co(NO3)2·9H2O, Co(NO3)2·6H2O and Co(NO3)2·3H2O.  相似文献   

12.
A new Eu3+-activated Y2(CO3)3·nH2O phosphor was successfully prepared via the hydrothermal process using urea as a reaction agent. Y2(CO3)3·nH2O:Eu3+ phosphors displayed an intense red emission at 615 nm due to the 5D0 → 7F2 transition of Eu3+ ions under 254 nm excitation. The intensity of this emission was significantly increased with a rise in the hydrothermal temperatures. The study of photoluminescence properties demonstrated that Y3+ ions were replaced by Eu3+ ions in the host lattice at the 9-coordination sites. With an increase in heating temperatures, the morphology of Y2(CO3)3·nH2O:Eu3+ powders changed from a spherical to a rod-like shape. Calcination at elevated temperatures resulted in thermal decomposition of Y2(CO3)3·nH2O:Eu3+ to form Y2O3:Eu3+. The formed Y2O3:Eu3+ powder exhibited a rod-like morphology with an intense red emission.  相似文献   

13.
An ultrathin, ordered and two-dimensional polymer coating was prepared on a passivated iron electrode by modification of 16-hydroxyhexadecanoate ion HO(CH2)15CO2 self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. Subsequently, the electrode was healed in 0.1 M NaNO3. Protection of passivated iron against passive film breakdown and corrosion of iron was examined by monitoring of the open-circuit potential and repeated polarization measurements of the polymer-coated and healed electrode in an aerated 0.1 M NaCl solution during immersion for many hours. Localized corrosion was markedly prevented by coverage with the polymer coating and the healing treatment in 0.1 M NaNO3. Prominent protection of iron from corrosion in 0.1 M NaCl was observed before the breakdown occurred. The electrode surface covered with the healed passive film and polymer coating was analyzed by contact angle measurement, X-ray photoelectron spectroscopy and electron-probe microanalysis.  相似文献   

14.
Well crystallized copper vanadium oxide hydroxide hydrate (Cu3(OH)2V2O7·nH2O) nanoparticles have been successfully synthesized by a simple hydrothermal method. The morphology and structure of the as-synthesized products were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The composition of Cu3(OH)2V2O7·nH2O was studied by thermal analysis (TG, DTA), which indicates that there are two molecules of water in a Cu3(OH)2V2O7·nH2O molecular formula. Electrochemical properties of Cu3(OH)2V2O7·2H2O nanoparticles as positive electrode of lithium ion battery were studied by conventional charge/discharge tests at different current density, showing steady initial discharge platforms near 1.7 V. The first discharge capacity of Cu3(OH)2V2O7·2H2O electrode arrives at 868 and 845 mAh g−1 at current density of 0.01 and 0.02 mA cm−2, respectively.  相似文献   

15.
Self-healing protective films of 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 (abbreviated to BTESE) polymer containing sodium silicate Na2Si2O5 (water glass) and cerium(III) nitrate Ce(NO3)3 were prepared on a zinc electrode previously treated in a 1×10−3 M Ce(NO3)3 solution at 30 °C for 30 min. After the surface of coated electrode was crosswise scratched with a knife edge, the electrode was immersed in an aerated 0.5 M NaCl solution at 30 °C for many hours and polarization measurements of the scratched electrode were carried out for estimating the self-healing effects of the films on zinc corrosion at the scratches. The optimal quantities of Na2Si2O5, Ce(NO3)3 and BTESE in the films were determined by polarization measurements and observation of pit formation at the scratches. No pitting corrosion occurred at the scratches on the zinc electrode covered with a film composed of their optimal quantities after immersion in the solution for 72 h.  相似文献   

16.
Corrosion resistance and wear resistance are the two important parameters for high performance of zinc galvanic coating. In the present work, the improvement of these two characteristics was achieved by the incorporation of Al2O3-ZrO2 mixed oxide composite in the coating. Al2O3-ZrO2 mixed oxide composite was synthesized from ZrOCl2·8H2O. Aluminium rich zinc coatings with high sliding wear resistance was developed from a galvanic bath containing the mixed oxide. Based on the performance of the coating during physicochemical and electrochemical characterization, the concentration of mixed oxide composite in the bath was optimized as 0.50 wt% Al2O3-0.50 wt% ZrO2. While rich in Al-metal content in the coating caused high corrosion resistance, the incorporation of the mixed oxide improved structural characteristics of the coating resulting in high wear resistance also. The coating was nonporous in nature and even the interior layers had high stability. The coatings have potential scope for high industrial utility.  相似文献   

17.
A new synthesis process, laser ablation in an aqueous solution of target material, was applied to synthesize nanostructured CeO2/TiO2 catalyst particles. Reactivity within the laser plume (plasma) can be used to synthesize CeO2 from an aqueous solution, 2 M cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution, and to fabricate TiO2 from Ti target. CeO2/TiO2 nanoparticles were successfully synthesized by the laser ablation of Ti target in 2 M cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution. Laser ablation of Ti in a liquid environment and chemical reactions of the solution within a plasma plume are discussed.  相似文献   

18.
A two-dimensional polymer coating, the self-assembled monolayer of 16-hydroxy hexadecanoate ion HO(CH2)15 modified with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3 was prepared on the passivated iron electrode and further, the passive film was healed by additional treatment in 0.1 M NaNO3. This electrode was immersed in oxygenated 0.1 M KClO4 solutions with and without 1 × 10−4 to 1 × 10−2 M of Cl. Protection of passive film against breakdown by covering the electrode with the polymer coating was examined by monitoring the open-circuit potential during immersion in the solutions for many hours to determine the time for passive film breakdown, tbd. Repeated polarization measurements were carried out during immersion in these solutions for obtaining the protective efficiency, P. The tbd value of the passivated, polymer-coated and healed electrode in 0.1 M KClO4 solutions with and without Cl increased with a decrease in the concentration of Cl. No breakdown occurred on the electrode during immersion in 0.1 M KClO4 solutions with and without 1 × 10−4 of Cl for 360 h. The P values were extremely high, more than 99.9% before tbd, indicating complete protection of iron from corrosion. The effect of healing treatment in 0.1 M NaNO3 on passive film breakdown was investigated by electron-probe microanalysis.  相似文献   

19.
Aqueous solutions with 3 mol L−1 (M) diethanolamine (DEA) concentration are extensively used in the gas processing industry to remove acid gases. However, the degradation of the DEA and the formation of heat-stable salts (HSS) lead to severe corrosion problems. Even worse, equipment corrosion can be magnified by the unavoidable presence of sulphide acid and dissolved oxygen as a result of hydrocarbon (natural gases and crude oil) processing. The aim of this work is to study the combined corrosion effects of DEA, sulphide acid and oxygen on carbon steel. Electrochemical methods revealed that in the 3 M DEA medium without oxygen, corrosion processes are modulated by adsorbed DEA film formation. Furthermore, it was shown that the addition of oxygen and 15 × 10−3 mol L−1 (15 mM) H2S produced the formation of an adherent film on the carbon steel surface. Chemical analyses by EDAX revealed a homogeneous film of corrosion products composed of iron oxide and sulphide formed in DEA solution containing O2 and H2S, respectively. Equivalent circuits were used to estimate the parameters associated with ion diffusion through the formed corrosion films. The results showed that the presence of H2S induced the formation of thin iron sulphide films that provide protective properties to the metal. It is concluded that the presence of oxygen in a sweetening plant should be avoided as DEA degradation can be produced with the subsequent decrease in chelating process efficiency and the increase in corrosion problems.  相似文献   

20.
A series of Ce3+ doped novel borate phosphors MSr4(BO3)3 (M = Li or Na) were successfully synthesized by traditional solid-state reaction. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. The optimal concentrations of dopant Ce3+ ions in compound MSr4(BO3)3 (M = Li or Na) were determined through the measurements of photoluminescence spectra of phosphors. Ce3+ doped phosphors MSr4(BO3)3 (M = Li or Na) show strong broad band absorption in UV spectral region and bright blue emission under the excitation of 345 nm light. In addition, the temperature dependences of emission spectra of M1+xSr4−2xCex(BO3)3 (M = Li or Na) phosphors with optimal composition x = 0.05 for Li and x = 0.09 for Na excited under 355 nm pulse laser were also investigated. The experimental results indicate that the M1+xSr4−2xCex(BO3)3 (M = Li or Na) phosphors are promising blue emitting phosphors pumped by UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号