首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
罗丹  晏云鹏  全学军 《化工进展》2015,34(8):3133-3141
垃圾渗滤液是一种重污染的有毒有机废水,对生态环境造成了严重的威胁。本文综述了垃圾渗滤液现有的膜处理技术,与传统处理工艺相比,膜技术具有低能高效等优点,是未来渗滤液处理技术的重要发展方向。由于垃圾渗滤液组成的复杂性,根据不同处理目的,微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)4种膜在垃圾渗滤液处理中都得到了一定的应用。总结发现,其中MF和UF对渗滤液的处理效果较差,一般作为渗滤液的预处理技术;NF和RO对渗滤液的处理效果较好,主要作为其深度处理技术。然而,膜污染阻碍了膜技术在渗滤液处理方面的发展与应用,为此可通过研究开发新型膜材料、有效的预处理技术和膜分离工艺优化等方面来防止膜污染的发生,以便膜技术在渗滤液及其他水处理方面得到更加广泛的应用。  相似文献   

2.
Filtration performance and fouling of nanofiltration (NF) and reverse osmosis (RO) membranes in the treatment of dairy industry wastewater were investigated. Two series of experiments were performed. The first one involved a NF membrane (TFC-S) for treating the chemical-biological treatment plant effluents. The second one used a RO membrane (TFC-HR) for treating the original effluents from the dairy industry. The permeate flux was higher at higher transmembrane pressures and higher feed flowrates. The curves of permeate flux exhibited a slower increase while the feed flowrate decreased and the pressure increased. Membrane fouling resulted in permeate flux decline with increasing the feed COD concentration. Furthermore, the flux decline due to the COD increase was found higher at higher pressures for both NF and RO membranes.  相似文献   

3.
陆至羚  柳建华  张良  张瑞  吴昊  祁良奎 《化工进展》2015,34(8):2961-2966
CO2作为一种天然制冷剂在微通道内应用具有很大的换热优势,然而由于微尺度效应及其物性,在低干度区容易发生干涸,严重影响换热效果。为研究微细通道内CO2流动沸腾换热与干涸特性,搭建了相应实验装置,对内径分别为1mm、2mm、3mm以及内表面粗糙度为16μm的不锈钢管,在CO2制冷剂热流密度2~34kW/m2、质量流率50~1350kg/(m2·s)、饱和温度-10~15℃下进行换热性能与干涸实验对比研究。结果表明:常规管径换热特性在微细通道内不再适用;热流密度的增加对于强化核态沸腾换热具有显著影响,高于临界热流密度(critical heat flux,CHF)则发生干涸;质量流率对于核态沸腾区换热系数的影响则较小;不同饱和温度时换热特性有所不同,高饱和温度下换热系数随其升高而提高,低饱和温度下则相反;干涸过程对总换热系数的影响占34%。研究结论为CO2微通道换热器的研究开发提供理论依据。  相似文献   

4.
《分离科学与技术》2012,47(13):1968-1977
A membrane-based treatment strategy was developed for purifying the highly alkaline textile mercerization wastewater. 0.2-μm MF and 100 kDa UF membranes were evaluated as pretreatment alternatives before 10 kDa UF and 200 Da NF membranes. Turbidity was almost totally removed by both pretreatment options, while UF (100 kDa) showed higher COD retention than MF. In total recycle mode of filtration, fouling of both UF and MF membranes were 80% reversible by physical and almost totally reversible (≥ 97%) by chemical cleaning. In the second stage filtrations applied to the pretreated wastewater samples, NF could yield high (97-98%) COD retentions and low permeate COD concentrations (≤ 22 mg/L), while 10 kDa UF could only reduce the COD concentration to 150 mg/L. While no NaOH was lost in the MF+UF process, the use of NF as second stage resulted in 12-17% NaOH retention. The permeate flux in all second stage processes were stable, implying that the majority of the feed components that would cause fouling had been removed in the pretreatment stages. Permeate of the MF+NF sequence was concentrated by evaporation with no foaming problems, showing that the hybrid process can be applied to recycle a purified and concentrated caustic stream to the mercerization process.  相似文献   

5.
In the face of human society’s great requirements for health industry, and the much stricter safety and quality standards in the biomedical industry, the demand for advanced membrane separation technologies continues to rapidly grow in the world. Nanofiltration(NF) and reverse osmosis(RO) as the highefficient, low energy consumption, and environmental friendly membrane separation techniques, show great promise in the application of biomedical separation field. The chemical compositions, microstr...  相似文献   

6.
One of the main disadvantages of batch membrane processes is the increase of the pollutant concentration in the feedstock throughout the operation. Operating the plant at constant process conditions leads in many cases to weaker performances and, moreover, to heavy fouling on the membranes. Critical flux-based methods are one of the most used approaches to overcome fouling problems. Within critical flux conditions, only reversible fouling can occur, which can be periodically soft-cleaned.This work studies the relationship between particle size distributions in the feed stream and critical flux values when different pretreatment processes are applied to an olive vegetation waste water stream. The considered pretreatment processes were: coagulation (with aluminum hydroxide and aluminum sulphate), aerobic biodigestion (by means of fungi) and photocatalytic organic matter reduction (by means of nanometric titanium dioxide anatase powders irradiated by UV light). The study was carried out at pilot plant scale (100 L batch capacity).These results were compared with performances and effects on the critical flux value for MF, UF and NF membranes. The different pretreatment on the same waste water stream shifts differently the particle size distribution mainly by organic matter degradation, and this influences heavily the critical flux value and thus the filtration outcome.Finally, the purification of the olive vegetation waste water stream can be performed with a MF, UF, NF and RO membrane system in series, being very careful in choosing the correct operating conditions to avoid the quick formation of an unsustainable fouling.  相似文献   

7.
Nanofiltration membranes (NF) have applications in several areas. One of the main applications has been in watertreatment for drinking water production as well as wastewater treatment. NF can either be used to treat all kinds of water including ground, surface, and wastewater or used as a pretreatment for desalination. The introduction of NF as a pretreatment is considered a breakthrough for the desalination process. NF membranes have been shown to be able to remove turbidity, microorganisms and hardness, as well as a fraction of the dissolved salts. This results in a significantly lower operating pressure and thus provides a much more energy-efficient process. Similar to other membrane processes, a major problem in NF membrane applications is fouling. Several studies have investigated the mechanisms of fouling in NF membranes and suggested methods to minimize and control the fouling of NF membranes. For NF membrane characterizations and process prediction, modeling of NF processes and the use of atomic force microscopy (AFM) are very important. The ability to predict the performance of NF processes will lead to a lower number of experiments, saving of time and money, and help to understand the separation mechanisms during NF. A comprehensive review of NF in water treatments is presented including a review of the applications of NF in treating water as well as in the pretreatment process for desalination; the mechanism as well as minimization of NF membrane fouling problems; and theories for modelling and transport of salt, charged and noncharged organic compounds in NF membranes. The review will also address the application of AFM in studying the morphology of membrane surfaces as part of the NF membrane characterization.  相似文献   

8.
《Desalination》2007,202(1-3):302-309
Both the relationship between the flux and the fouling mechanism of ultrafiltration (UF) membrane and the effects of pretreatment before reverse osmosis (RO) process on the treatment of the effluent of industrial park wastewater treatment plant (IPWTP) were investigated to examine the application of membrane processes on the water reuse treatment. For the former, the flux data was first fitted to the Hermia model to give the implication of the fouling mechanism. Then, the fouling mechanism was further identified with the aid of the SEM morphology of membrane surfaces. For the latter, the changes of both water characteristics (turbidity, TOC, conductivity, particle size distribution, and organic solute molecular weight) and membrane properties (surface zeta potential and surface morphology) before and after the treatment of membrane processes were measured. It was found that the major blocking mechanisms of UF membrane process at initial and final stage were standard blocking of pore (causing from colloid materials) and cake blocking of pore (causing from suspended particles), respectively. On the other hand, it was concluded that the permeate from 1 μm/UF/RO process was suitable for the reuse of cooling water and low pressure boiler water.  相似文献   

9.
Fouling of membranes by colloidal organic and inorganic particles continues to be documented as the most common and challenging obstacle in attaining stable continuous operation of reverse osmosis (RO) and ultrafiltration (UF) systems. Much current research is being conducted on physical parameters to mitigate such fouling. The focus has been on membrane synthesis and element design; microfiltration and ultrafiltration pretreatment; electromagnetic devices; correlation with physical factors such as Silt Density Index, zeta potential and critical flux; technique of direct observation of fouling process through a membrane; and classification of macromolecular organics for correlation with fouling characteristics. We report initial successes with chemical control of colloidal fouling. Through screening with a large number of observable coagulations of natural colloids, we have developed a group of proprietary anticoagulants and dispersants that would, at less than 10 ppm dosage to the RO feedwater, control various classes of colloidal foulants. Case studies of the control of humic matter, elemental sulfur and colloidal silicate in problematic RO systems that became stabilized are briefly presented. We conclude that a great need and potential exists in economically controlling the myriads of fouling interactions of colloidal particles during concentration within the brine channels of RO membrane elements. Low dosages of antifoulants can in many cases obviate the need for installation and maintenance of pretreatment unit or operations designed to remove such colloidal foulants from the process stream.  相似文献   

10.
The variations of porosity parameters of some reverse osmosis (RO) and nanofiltration (NF) polyamide thin-film composite membranes were determined in order to explain the changes of membranes' performances caused by membrane fouling and chemical cleaning of the fouled membranes. The pore size distribution curves and the effective number of pores in the membrane surface indicated plugging of the tight network pores in the membrane surface and even their disappearance during fouling. The enlargement of the wider aggregate pores was responsible for the noticed reduction in salt rejection. The initial pore structure of the fouled RO membrane was restored by immediate chemical cleaning. A delay of chemical cleaning of the fouled membranes led to irreversible changes in the porous structure of both the RO and NF membranes, which were caused by a microbial activity.  相似文献   

11.
BACKGROUND: The first stage of the cork industrial process generates great volumes of wastewater with moderate to high organic pollutant content that must be purified using different procedures, such as filtration by membranes. RESULTS: The tangential filtration of these wastewaters was studied using two different laboratory equipments. In the first one, three ultrafiltration (UF) membranes were tested, with molecular weight cut‐off (MWCO) 100 kDa and 30 kDa, and two operating modes were used: total recycling of permeate and retentate streams, and in continuous mode, without recycling both streams. In the total recycling UF experiments, the influence of the operating variables on the permeate flux was first established. The effectiveness of the different membranes was determined by evaluating the rejection coefficients for several parameters that measure the global pollutant content of the effluent. The values found for these rejection coefficients were in the following order: ellagic acid and color > absorbance at 254 nm > tannic content > COD (chemical oxygen demand). In the continuous mode experiments, the fouling mechanism for each membrane was established by fitting the experimental data to various filtration fouling models given in the literature. The operating mode in the second equipment was batch concentration, and additional experiments were carried out with an UF membrane (2 kDa), and with a NF membrane (with MWCO in the range 150–300 Da). CONCLUSIONS: The three operating modes tested provided different rejection levels of organic matter; among them, the most effective procedure tested was batch concentration mode using a NF membrane. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
A reverse osmosis (RO) treatment stage was examined for the complete depuration of the different effluents exiting the olive mill factories (OMW) working with diverse extraction procedures, that is, the two-phase and the three-phase extraction processes, respectively. In the present work, the modelization of batch RO purification of OMW by means of the relevant equations of the threshold flux theory for fouling control and plant dimension is addressed. Results show that higher threshold flux values (20.2–22.1% increase) and major feed recovery rates (80.2–85.0%) as well as very significant reduction of the long-term fouling index (27.3–52.7%) were achieved by using as pretreatment steps the following series of processes: pH-T flocculation, UV/TiO2 photocatalysis, UF and NF in series. This leads to both lower energy and capital costs, in particular a reduction of the required membrane area in case of batch membrane processes equal to 22.3–44.8%. Accurate prediction of the rejection behavior was attained by the used leaky solution-diffusion model in all cases, with reflection coefficients (σCOD) ranging from 0.86 to 1.0. The purified effluent streams are finally compatible with irrigation water quality standards (COD values below 1000 mg L−1).  相似文献   

13.
Issues of fouling and effective cleaning limit the adoption of UF in pulp and paper mill applications. The choice of an optimal membrane for a specific filtration application is a challenging task due to the fact that fouling is a complex phenomenon. This study compares regenerated cellulose (RC) and polyethersulphone (PES) membranes in UF of two chemithermomechanical pulp mill process waters. The process waters originated from hardwood and softwood pulping. Based on their flux recovery, PES membranes sustained greater fouling than RC membranes even though the hydrophobicity of RC membranes was increased remarkably by adsorptive fouling. The process water affected the performance of the membranes. The membrane characteristics were more important in determining fouling when softwood process water was used than when hardwood process water was used. Hydrophilicity and morphology of the membranes were seen to have a clear influence on fouling.  相似文献   

14.
Reverse osmosis (RO) is a well‐established process for water desalination and effluent treatment and it is anticipated that its application could be extended to complex mixtures of industrial effluents. Pilot‐scale experiments using a spiral‐wound thin‐film composite (TFC) polyamide membrane were carried out to investigate the potential of RO for processing a composite effluent, which was a mixture of various wastewaters from bulk drug and pharmaceutical factories. Separation performance was evaluated at various feed pressures (0–70 bar) and feed concentrations (2–30 gdm?3), and was found to improve with increasing pressure. High rejection of dissolved solids (~98%), COD, BOD and almost complete removal of color were achieved with reasonable flux rates and water recovery. The effect of concentration polarization and fouling on flux and rejection rates as functions of time was evaluated. An approximate cost estimate for an aerobic process vis‐à‐vis a RO membrane process for treatment of the composite effluent is presented. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
Membranes can be used for wastewater treatment. The selection of the appropriate membrane depends on a number of factors, such as waste characteristics, nature of materials present in the wastewater, concentration, temperature, pH, etc. If the wastewater contains low molecular weight organics, reverse osmosis (RO) is the best treatment process. RO membranes allow solvent (water) to pass and prevent the transport of organics, either completely or partially. In this study, raw wastewater from an alcohol manufacturing plant was treated using a RO process. The chemical oxygen demand (COD) of the wastewater was between 35000-40000 mg/l due to the presence of organic components. Eight polymeric membranes (e.g. FT30, PVD, DSII, DS, BW30, 37100, 3750 and NF45) were used in total. None of the membranes were able to reduce COD to a desirable level (i.e. less than 200 mg/l) in one step. However a two-step process could be designed for wastewater treatment. Based on data obtained for flux and rejection, the NF45 nanofiltration membrane exhibited the best performance. A high volume of fluid can pass through the NF45 membrane because of its high porosity. The flux of this membrane (i.e. 15 kg/m2.h) was higher than the reverse osmosis membranes tested. The NF45 membrane decreased COD to a greater extent than the other membranes tested (52%). While the PVD membrane showed better efficiency compared to the other reverse osmosis membranes, probably because of its material of construction and configuration.  相似文献   

16.
随着膜技术的发展与应用,20世纪80年代出现的纳滤膜充分弥补了反渗透与超滤之间的空白。介绍了纳滤膜的特性及其独特分离特点,阐述了纳滤膜在处理饮用水中有机污染物的必要性和合理性。最后指出了它的应用前景。  相似文献   

17.
Wastewater reclamation requires processes and technologies having the ability to reduce the presence of micropollutants which are not wholly treated in conventional WWTP. Due to the complexity of membrane-solute interactions and the diversity of secondary treatment effluent (STE) matrices, deeper investigations are required to identify the major foulant species and more specifically their behaviour at high concentration in real waters. This study investigates the rejection and fouling potential of nanofiltration (NF) and low-pressure reverse osmosis (RO) membranes with two STEs sampled from i) a conventional activated sludge process coupled with ultrafiltration (CAS-UF) and from ii) a membrane bioreactor MBR (AquaRM®, SAUR (France)). Whatever the origin of the effluent, RO seems to be the best solution to prevent pollution of tertiary effluents (expected result) but also to obtain low fouling levels. The different composition and molecular weight distribution of MBR and CAS-UF effluents can explain the different fouling behaviours that were observed.  相似文献   

18.
Conventional water reclamation processes, such as membrane bioreactors, are not always effective in removal of pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs) and/or N-nitrosodimethylamine (NDMA), even with the reverse osmosis (RO) membrane process. A study was conducted, at a NEWater factory in Singapore, to compare a conventional ultrafiltration (UF) membrane /RO treatment process with a treatment train having the HiPOx unit, an advanced oxidation process (AOP), which was installed between the UF and the RO unit operations. By incorporating the HiPOx into the UF/RO treatment process, following results were observed; 1) increased removal of PPCPs, EDCs and NDMA, 2) improvement in ultraviolet transmission (UVT) of the RO permeate, 3) enhanced removal of TOC and color, and increased UVT of the RO brine, 4) suppression of the increase in the RO transmembrane pressure by organic fouling.  相似文献   

19.
The article presents the results of studies concerning the hydraulic permeability of integrated membrane systems during the treatment of municipal landfill leachate. The laboratory-scale experiments were conducted to determine the effectiveness of coagulation as a pretreatment option for treating stabilized landfill leachate and effectiveness of nanofiltration (NF) and reverse osmosis (RO) processes. The municipal landfill leachates were analyzed for the concentration of the following: polycyclic aromatic hydrocarbons (PAHs), nitrate nitrogen, ammonium nitrogen, chemical oxygen demand (COD), total organic carbon (TOC), total carbon (TC), suspended soils (SS), turbidity, pH. The commercially available coagulant – aluminum sulfate Al2(SO4)3·18H2O (alum) was used as a coagulant. The NF process was carried out at the transmembrane pressure of 1.5 MPa. The membrane separation process was based on a thin film membrane (DK). The transmembrane pressure of the RO stood at 2 MPa and for this process one polyamide membrane (AG) was used. The level of leachate treatment was defined for raw and cleaned wastewater indicators. Both NF and RO membranes allowed obtaining the high level of pollutants removal. In the coagulation–NF system, the removal efficiency was equal to 77% for PAHs, 88% for COD, 72% for ammonium nitrogen, 80% for nitrate nitrogen, 67% for TOC, 80% for TC, 96% for SS and during the RO – 86% for PAHs, 98% for COD, 93% for ammonium nitrogen, 87% for nitrate nitrogen, 89% for TOC, 100% for TC, 98% for SS. The calculations based on the assumptions of the mathematical filtration model (relaxation) made it possible to predict the efficiency of commercial filtration membranes used for leachate treatment.  相似文献   

20.
《Desalination》2007,202(1-3):286-292
A nanomembrane (NTR 729HF) and three different types of reverse osmosis (RO) membranes (CPA2, LFC1, and ESPA1) were tested for the treatment of high concentration of nitrate wastewater from stainless steel industry. All the tested RO membranes showed higher rejection rates (90–99% at 1000–60 mg/L of NO3 -N) than the NF membrane. The rejection rate and flux of RO membranes were not highly affected by pH variation and Ca2+ as co-existing ion. However, the rejection rate of NF, which was 67% at 60 mg/L of feed concentration, was decreased as pH decreased and Ca2+ concentration increased indicating that charge repulsion is one of the major rejection mechanisms. As nitrate concentration increased from 20 to 1000 mg/L in feed water, the removal rate decreased from 67 to 20% in NF membrane. The flux of RO was relatively high and ESPA1 (a low-pressure RO type) showed more than two times higher flux compared to the NF. ESPA1 was successfully tested for a longterm experiment with real stainless steel wastewater for 30 days of experimental period. Current study implicates that RO membranes could be an alternative for the treatment of stainless steel wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号