首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As a consequence of an accidental fusion of a 137Cs source in a steel production factory, 40 m3 of radioactive liquids were generated in the plant decontamination process. This radioactive liquid waste was treated by a reverse osmosis plant, managing to declassify more than 36 m3. The remaining 4 m3 were treated by evaporation reducing the final volume to less than 1 m3. This paper describes the reverse osmosis plant used and the process of treatment, and presents the results of reverse osmosis membrane performance in the course of the treatment.  相似文献   

2.
An investigation on the recovery of chromium from the effluent of a chrome-tanning bath has been performed using nanofiltration (NF) followed by reverse osmosis (RO). The experiments are conducted using a rectangular cross flow cell under laminar and turbulent regimes. Significant flux enhancement is achieved using thin wires as turbulent promoters. The performance criteria are evaluated in terms of the concentration of chromium, COD, BOD, TDS, TS, pH, and conductivity of the permeate. The effects of different operating parameters on permeate flux and observed retention of chromium are evaluated experimentally. The retention of chromium is found to be 91–98% for NF and 98.8–99.7% for RO for the experimental conditions of this study. Concentrations of chromium and COD of the final permeate are well within the permissible limits.  相似文献   

3.
Leachate treatment by the reverse osmosis system   总被引:1,自引:0,他引:1  
The DT-Module system for landfill leachate treatment installed at Yachiyo Town in the Kanto District of Japan was put into service in April 1999. The system, which is equipped with a disc-tube type reverse osmosis (RO) membrane module called the DT-Module, has been operating satisfactorily for more than two and a half years, producing very-high-quality product water, after treating very-high-salinity water with high-scaling ions. On the other hand, in Japan, the dioxin problem has become increasingly severe, and development work for dioxin removal incorporated in leachate treatment has also been requested. The DT-Module system showed excellent performance in removing dioxins from leachate. For dioxins in sludge from the settling basin and dried salt from the concentrate of the RO system, successful destruction data were obtained by furnace system heating in an oxygen-deficient atmosphere. The removal rate of dioxins by the DT-Module system and the destruction rate by the furnace were both higher than 99.9%. By applying the DT-Module system together with the furnace system, an excellent leachate treatment and a complete dioxin removal and destruction system have become available for leachate from landfills depositing incineration residue-containing dioxins.  相似文献   

4.
Reverse osmosis (RO) is a well‐established process for water desalination and effluent treatment and it is anticipated that its application could be extended to complex mixtures of industrial effluents. Pilot‐scale experiments using a spiral‐wound thin‐film composite (TFC) polyamide membrane were carried out to investigate the potential of RO for processing a composite effluent, which was a mixture of various wastewaters from bulk drug and pharmaceutical factories. Separation performance was evaluated at various feed pressures (0–70 bar) and feed concentrations (2–30 gdm?3), and was found to improve with increasing pressure. High rejection of dissolved solids (~98%), COD, BOD and almost complete removal of color were achieved with reasonable flux rates and water recovery. The effect of concentration polarization and fouling on flux and rejection rates as functions of time was evaluated. An approximate cost estimate for an aerobic process vis‐à‐vis a RO membrane process for treatment of the composite effluent is presented. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
反渗透-微电解集成技术处理印染废水   总被引:1,自引:1,他引:0  
文章系统地研究了操作压力、进料流量、温度、运行时间、浓缩体积比等因素对反渗透膜处理印染废水处理效果的影响,并确定了反渗透膜的清洗周期和清洗方法。在实验确定的最佳的工艺条件下,反渗透膜对印染废水的浊度和色度的去除率均为100%,COD去除率大于76%,电导率去除率大于98%,透过液达到了再生水的水质标准。反渗透膜清洗周期为7 d,采用化学清洗和水力冲洗相结合的清洗方法可使反渗透膜的通量恢复。  相似文献   

6.
In bench-scale tests of seawater reverse osmosis desalination it is important to carefully consider osmotic pressure effects and determine the extent of concentration polarization so that sources of flux variation—whether from fouling, compaction, or osmotic pressure changes—can be properly assessed. Rigorous modeling of concentration polarization is difficult because of the complex geometries and flow regimes in RO modules; typically, concentration polarization must be measured. However, concentration polarization measurement usually requires knowledge of membrane permeability, which can vary from coupon to coupon. In this study a method is presented to determine both the membrane permeability and the concentration polarization regime in a single test. The key to the test is to allow the salt concentration to vary over time in a predictable way and extract parameters from a model fitted to the flux data. The usefulness of this technique is highlighted by evaluating results from several seawater experiments. It was found that specific flux decline in the experiments was caused by changes in osmotic pressure and membrane compaction. RO fouling by seawater organic-matter was not significant for the several seawater samples tested.  相似文献   

7.
The aim of this research was to establish a rationale for the cleaning of reverse osmosis (RO) membranes fouled by whey. Wheywas processed using a hydrophilic polyamide FT30 RO membrane. The effects ofoperating conditions such as transmembrane pressure, temperature and cross-flow velocity on flux behavior were elucidated before studying the cleaning. A wide variety of cleaning agents including acids, bases, enzymes and complexing agents was used. Resistance removal and flux recovery were used for demonstrating the cleaning efficiency. Hydrochloric acid (0.05 w%) resulted in maximum flux recovery and complete resistance removal. Although sodium hydroxide showed high cleaning efficiency, it may damage the membrane, predominantly at a high pH. Nitric acid and ammonia showed high but not complete resistant removal. Other acids (phosphoric acid and oxalic acid), ammonium chloride, urea and surfactants (SDS, Triton-X100 and CTAB) exhibited moderate effects while EDTA was of low efficiency. The cleaning effectiveness depends on the cleaner concentration. Using sulphuric acid, higher concentration caused lower resistance removal. For HCl the cleaning efficiency increased with the cleaner concentration, passed a maximum and decreased afterwards. Operating conditions such as cleaningtime and temperature affect cleaning efficacy. A longertime and higher temperature provide higher resistance removal. However, the effects are somewhat limited.  相似文献   

8.
每台反渗透装置可生产除盐水60t/h,但需排出浓盐水20t/h。为了减少废水排放,对设备进行了改造,将1/2浓盐水回刚到反渗透装置的给水中。改造后反渗透工艺运行稳定,出水指标达到国家标准,可节约地下水20t/h,达到r竹能减排与环保增效的目的。  相似文献   

9.
Sangho Lee 《Desalination》2003,155(2):131-139
Scale formation of soluble salts is one of the major factors limiting the application of reverse osmosis (RO) membranes. In this study, rotating RO, which takes advantage of Taylor-Couette flow instabilities to reduce concentration polarization and membrane fouling, was investigated as a novel method to control CaSO4 scale formation. The permeate flux for rotating RO at ω = 180 rpm remains constant up to a volume concentration factor (VCF) of 4.2, while the permeate flux declines steadily with increasing VCF for no rotation. This is probably because vortices in rotating RO induce bulk crystallization and prevent scale particle deposition on the membrane surface. The anti-scaling effect in rotating RO increases with increasing rotational speed and depends to some extent on transmembrane pressure.  相似文献   

10.
The reverse osmosis (RO) desalination process to make fresh water from seawater has been studied here. First, a model for the process is developed. Sensitivity of different operating parameters (feed flow rate, feed pressure) and design parameters (internal diameter, total number of tubes) on the recovery ratio are studied via repetitive simulation. Finally, an optimisation framework for the process is developed so as to maximize the recovery ratio or a profit function using different energy recovery devices, subjectto general constraints. The optimal operating parameters (feed flow rate, feed pressure) and design parameters (internal diameter, total number of tubes) are determined by solving the optimisation problem using an efficient successive quadratic programming (SQP) based method. The optimal values for the decision variables depend on the constraints introduced, and are also sensitive to variations in water and energy prices, as well as feed concentration. The use ofthe emerging energy recovery devices is widely justified, reporting much higher reductions in operating costs than the traditional technology used for this purpose. Using a pressure exchanger device, it is possible to reduce energy consumption by up to 50%.  相似文献   

11.
The tanning industry uses large quantities of water and produces a correspondingly large amount of wastewater with high levels of salts and organic materials. Before these wastewaters can be eliminated, they must be submitted to a suitable depuration treatment. However, conventional treatments such as those used for urban wastewater are not able to reduce the salt content sufficiently and new methods need to be studied in the light of new technologies. In this aspect, membrane technology is increasingly used as a separation technique in chemical and environmental engineering, including desalination, selective separation and wastewater treatment. In this paper, we describe a comparative study of six different reverse osmosis membranes, which were tested for their ability to reduce the salt content in the tertiary treatment after the elimination of chromium salts and organic matter of an effluent from a pilot plant for treating industrial wastewater from the tanning industry to reach the legal levels established for their safe disposal. The membranes were checked using a 3×10−3 m2 flat cell, where the concentrated streams were recirculated to the feed reservoir.  相似文献   

12.
Arsenic removal by reverse osmosis   总被引:2,自引:0,他引:2  
Robert Y. Ning 《Desalination》2002,143(3):237-241
Arsenic is widely distributed in nature in air, water and soil. Acute and chronic arsenic exposure via drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan, where a large proportion of ground water is contaminated with arsenic at levels from 100 to over 2,000 micrograms per liter (ppb). Public health standards of maximum of 50 ppb have been adopted by the US and World Health Organization in the 1970s and the 80s. Carcinogenicity and genotoxicity led to the WHO recommendation of 10 ppb maximum level in 1993, followed by the US adoption of the same in 2001, with the US estimate that 5% of all US community water systems will have to take corrective actions to lower the current levels of arsenic in their drinking water. In high arsenic areas of the world, the need for better water treatment and resulting economic impact would be even greater. In this article, we briefly review the geochemistry, natural distribution, regulation, anthropogenic sources and removal mechanisms of arsenic, pointing especially to the promise of reverse osmosis (RO) as a practical means of purification. We conclude that arsenic in the commonly high oxidation states of (V) is very effectively removed by RO. With further attention to the removal of the weakly acidic arsenic (III) species in waters by the operation of RO at sufficiently high pHs made possible by the newer antiscalants, practical processes can be developed with RO to remove all major species of arsenic from water. Further studies are needed in the characterization of the arsenic species being treated and in the design of the RO process to match the demands.  相似文献   

13.
K. Jamal  M.A. Khan 《Desalination》2004,160(1):29-42
The present investigation pertains to modeling of seawater desalination system. A simulation model was developed and verified for a small-scale reverse osmosis system. The proposed model combines material balances on the feed tank, membrane module andproduct tank with membrane mass transfer models. Finally a comprehensive simulation model has been developed incorporating the effect of mass transfer inhibition The model is non-linear differential equation representing the feed concentration as a function of operating time and space. The solution of the simultaneous differential equations was obtained using the fourth order Runge-Kutta method, due to self starting and stability. The model was verified using the experimental data from the literature [17,24]. Parameter sensitivity was carried out to select the proper step size. The simulation was run for over 1000 11 enabling a prediction of operational performance at high overall system recoveries.  相似文献   

14.
In reverse osmosis systems with high silica water severe and irreversible membrane scaling can be observed. But suitable test methods to find an appropriate antiscalant agent and the optimal dosage are missing. Usually only the silicate concentration in the feed water is regarded.In this paper the results of laboratory experiments about the influence of Ca2+- and Mg2+-ions on the behaviour of supersaturated solutions of silica in different test waters are discussed first. After that the new developed membrane-based test method to determine the effectiveness of antiscalants is presented.The applied different methods of analysis enabled the differentiation of three groups of silicates: ‘monomeric’, ‘polymeric’ and ‘filterable’.With the test method the strong impact of silicate scaling was proven, even if only small amounts of scale had been formed. It could be shown, that the ‘polymeric silica’ is mainly responsible for the membrane scaling. The kinetic of the formation of ‘polymeric silica’ is strongly influenced by the cations and the pH-value. It could be demonstrated that the use of a suitable antiscalant makes it possible to operate the plant at significantly higher recovery rates.  相似文献   

15.
Brackish groundwater treatment by reverse osmosis in Jordan   总被引:1,自引:0,他引:1  
Jordan is characterised by an arid to semi-arid climate and its population is increasing at an annual rate of 3.6%. With such a high population growth rate and fast social-economical development, water demand and wastewater production are steeply increasing, and the gap between water supply and demand is getting wider. Furthermore, the constraints for water resources development are also rising due to high investment costs and water quality degradation due to over-exploitation of aquifers. Desalination of Red Sea water by reverse osmosis (RO) and/or brackish groundwater desalination by nanofiltration or RO might be technically and economically viable to cope with water scarcity and overcome the water deficit in Jordan. The technical-economical feasibility of brackish groundwater treatment by RO for potable water production was investigated in this work. Brackish groundwater samples were collected from the Zarqa basin, Jordan, and characterised in terms of pH, conductivity, total solids, total dissolved solids, total suspended solids, and volatile solids. The water samples were pre-treated through a microfiltration cartridge (5 μm pore diameter) in order to eliminate the suspended matter. A pilot plant equipped with a FilmTec RO membrane (SW30-2521) was operated at 20-30 bar, 40°C, natural pH and up to a water recovery ratio of 77.5%. The results showed that RO is actually efficient since it highly reduced the content of organic and inorganic matters present in raw waters (rejections >98.5%) at a relatively affordable price (0.26 €/m3). This study contributes to the development of efficient technologies to produce affordable potable water in Mediterranean countries where the threat of water shortages is a severe problem.  相似文献   

16.
纳滤/反渗透膜处理重金属废水的性能   总被引:2,自引:1,他引:1       下载免费PDF全文
The performance of different nanofiltration (NF) and reverse osmosis (RO) membranes was studied in treating the toxic metal effluent from metallurgical industry. The characteristics and filtration behavior of the processes including the wastewater flux, salt rejection and ion rejection versus operating pressure were evaluated. Then the wastewater flux of RO membrane was compared with theoretical calculation using mass transfer models, and good consistency was observed. It was found that a high rejection rate more than 95% of metal ions and a low Chemical Oxygen Demand (COD) value of 10 mg·L^-1 in permeate could be achieved using the RO composite membrane, while the NF rejection of the salt could be up to 78.9% and the COD value in the permeate was 35 mg·L^-1. The results showed that the product water by both NF and RO desalination satisfied the State Reutilization Qualification, but NF would be more suitable for large-scale industrial practice, which offered significantly higher permeate flux at low operating pressure.  相似文献   

17.
Yunus Cerci 《Desalination》2002,142(3):257-266
The exergy analysis of a 7250 m3/d reverse osmosis (RO) desalination plant in California was conducted by using actual plant operation data, and an alternative design was investigated to improve its performance. The RO plant is described in detail, and the exergies across the major components of the plant are calculated and illustrated using exergy flow diagrams in an attempt to assess the exergy destruction distribution. The primary locations of exergy destruction were the membrane modules in which the saline water is separated into the brine and the permeate, and the throttling valves where the pressure of liquid is reduced, pressure drops through various process components, and the mixing chamber where the permeate and blend are mixed. The largest exergy destruction occurred in the membrane modules, and this amounted to 74.07% of the total exergy input. The smallest exergy destruction occurred in the mixing chamber. The mixing accounted for 0.67% of the total exergy input and presents a relatively small fraction. The second law of efficiency of the plant was calculated to be 4.3%, which seems to be low. The analysis of the alternative design was based on the exergy analysis. It is shown that the second law of efficiency can be increased to 4.9% by introducing a pressure exchanger with two throttling valves on the brine stream, and this saved 19.8 kW electricity by reducing the pumping power of the incoming saline water.  相似文献   

18.
为了确保煤矿矿井水出水氟化物质量浓度达到《GB 3838-2002地表水环境质量标准》Ⅲ类标准要求,采用RO反渗透法净化矿井水,研究了矿井水pH、盐质量浓度、系统压力及进水温度等主要因素对除氟性能的影响;结果表明:随着矿井水pH增大、矿井水盐质量浓度增大、系统压力增大、进水温度升高,除氟率均逐渐降低;为确保出水氟化物质量浓度小于1 mg/L,需将矿井水进水pH调至小于8,进水盐质量浓度调至小于5 g/L,反渗透系统压力控制在1.5 MPa以下,进水水温控制在60℃以下。  相似文献   

19.
Cost analysis of seawater desalination with reverse osmosis in Turkey   总被引:1,自引:0,他引:1  
Economically usable water resources per capita are decreasing due to excessive population increase each year in Turkey. For this reason, new water resources should be found in the near future. The potential water resources are seawater or well water both of which need removal of salinity. The most promising treatment method for salinity is reverse osmosis. While reverse osmosis becomes widespread, the cost of the process will decrease. There is no detailed information about cost of seawater desalination in Turkey. In this study, a cost analysis of seawater desalination in Turkey was performed for reverse osmosis systems. The basic parameters of cost analysis such as capacity, recovery, membrane life, energy, chemical costs and flux were evaluated based on the effects on capital, operating and total production costs.  相似文献   

20.
Very high purity chemicals are required for preparation of semiconductor materials and manufacture of printed circuit boards because low presence of metallic impurities is needed to avoid defects on silicon surface. Hydrogen peroxide is one of the most demanded chemical by the semiconductor industry and it must be submitted to ultrapurification processes to achieve the exigent requirements the chemical must fulfill to be accepted for semiconductor uses. In this paper, the potential of multistage reverse osmosis processes to reduce the metallic content of technical grade hydrogen peroxide below the limits fixed by the semiconductor industry is investigated. SEMI Grade 1 quality hydrogen peroxide was obtained by a two-pass reverse osmosis process in an experimental lab scale. A model based on Kedem-Katchalsky transport equations together with system material balances was proposed to describe the behavior of the installation. A full analysis of the influence of the design (recovery rates) and operation (applied pressures) variables over the performance of a simulated industrial scale plant was carried out. The economic viability of the simulated plant was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号