首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Desalination》2007,202(1-3):231-238
Two different NF membranes were operated to remove natural organic matter (NOM) originating from Dongbok Lake in Korea. Coagulation/sedimentation and sand filtration treated waters as membrane feed waters were used. The tested NF membranes were autopsied to compare the fouling propensity from different feed waters using pure water and a NaOH solution. Organic/inorganic foulants onto membrane surface were analyzed in terms of molecular weight (MW) distribution, structure, and IR analysis, and fouled membranes were also characterized in terms of pore size distribution, surface charge, and SEM–EDS analysis. Polysaccharides and/or N-acetyl aminosugar groups with MW ranging from 30,000 to 50,000 g/mol were identified using HP-SEC and IR analysis. Inorganic foulants (i.e., Si and Al) were also fouled onto the membrane surface and/or pores, and it is effectively removed by caustic cleaning, not pure water. Caustic cleaning was proven to be effective to remove both fouled NF membranes as a basis of flux recovery, and it could efficiently desorb the hydrophobic NOM constituents or protein-like substances from the relatively hydrophilic and less negatively charged NF membranes.  相似文献   

2.
The fouling potential of the negatively charged silica sol in electrodialysis (ED) by adsorption on the surface of an anion exchange membrane was investigated. Since the fouling potential is related to the physical and electrochemical properties of the silica sol and anion exchange membranes, it is important to characterize the properties of silica sol and membranes. The surface charge of silica sol was investigated by the electrophoretic mobility and its isoelectric point was determined as pH 3. The commercial anion exchange membranes were characterized in terms of exchange capacity, water content, the zeta potential and the electrochemical properties of the membranes using impedance spectroscopy to predict the effects on the electrodialysis performances. Among the characterized properties, exchange capacity and some electrochemical properties of the anion exchange membranes were rather improved after ED experiments. In the electrodialysis of solution containing silica sol, deposition of the silica sol did not decrease the desalting performance of the anion exchange membranes because of loosely packed cake layer on the membrane surface.  相似文献   

3.
《Desalination》2007,202(1-3):377-384
An extended DLVO (XDLVO) force analysis was introduced to predict natural organic matter (NOM) fouling in ultrafiltration (UF) membrane processes. Ultrafiltration membrane fouling experiments were performed using two NOM extracts from real waters and two commercial polymeric UF membranes. The hydrodynamic force by permeation drag and three interfacial forces of XDLVO (van der Waals, electrostatic, acid–base energy) were used for the force analysis. Acid–base interaction forces between NOM and UF membranes were dominant in short range (separation distances < 5 nm) and appear to determine the potential of NOM deposition. Relative extents of flux decline were successfully predicted using the short-range force analyses.  相似文献   

4.
Sangyoup Lee  Jaeweon Cho   《Desalination》2004,160(3):223-232
Ceramic membranes were compared with polymeric membranes with respect to natural organic matter (NOM) removal using two removal mechanisms (i.e., size exclusion and charge repulsion). NOM properties including molecular weight and molecular structure, at different charge densities, were examined, along with membrane characteristics, including molecular weight cut-off (MWCO) and surface charge. Integrated analyses of both NOM and membrane characteristics provided information for membrane evaluation of different membrane materials and configurations (i.e., tubular vs. flat sheet type). A ceramic tight-ultrafiltration (UF) membrane showed the same potential as a similar nanofiltration (NF) polymeric membrane, in terms of the minimization of haloacetic acid (HAA) formation. Moreover, a ceramic OF membrane with a MWCO of 8000 Daltons showed almost the same behavior as an equitable polymeric UF membrane with a MW CO of 8000 Daltons in terms of NOM removal.  相似文献   

5.
Two natural source waters containing natural organic matter (NOM) with different physical and chemical characteristics were dead-end filtered using five types of membranes having different material and geometric properties. In this study retained dissolved organic carbon (DOC) per unit membrane area is introduced as a better parameter compared to permeate volume, time, and delivered DOC to provide a reasonable comparison of NOM rejection and flux-decline trends. Retained DOC/NOM was calculated, which influences NOM concentration polarization at the membrane interface, and transport measurements of NOM rejection and flux decline were made. Molecular weight (MW) distribution measurements (by size exclusion chromatography) were used to calculate the average MW of the NOM. This persuasively demonstrated that the nominal molecular weight cut-off (MWCO) of a membrane is not the unique predictor of rejection characteristics for NOM composites. The charge density of NOM from the source waters was measured to estimate its effects on NOM rejection and flux decline during filtration. The contact angle of the membranes was used to determine hydrophobic interactions between NOM and membrane. All filtration measurements were performed at approximately the same permeate flow rate in order to minimize artifacts from mass transfer at the membrane interface. ESNA having a nominal MWCO of 200 Daltons showed NOM rejection greater than 95% and flux decline lower than 10% under a condition of a retained DOC of 0.5 mg C/cm2 for the feed source waters. The other membranes having larger membrane pores (nominal MWCOs ranging from 8,000 to 20,000 Daltons) than the ESNA showed NOM rejection ranging from 68% to 86% and flux decline ranging from 5% to 17% at the same retained DOC for the waters.  相似文献   

6.
Do Hee Kim 《Desalination》2003,151(1):11-20
The adsorption and transport characteristics of natural organic matter (NOM) in an ion-exchange (IX) membrane were investigated and the various methods to characterize the properties of NOM and the IX membrane were collectively evaluated in this study. NOM adsorption by an IX membrane is affected by both pH and ion strength. Under alkaline pH and low ionic strength, greater NOM adsorption can be expected. A good relationship was obtained between the amount of adsorbed NOM and the zeta potential. The NOM acids constituents are expected to be transported preferentially through an IX membrane during the electrodialysis (ED) process because of their negative charge density. However, the molecular mass of the NOM acids was too high to allow them to pass through the IX membrane pores, and this caused an accumulation or adsorption of the solutes on the membrane surface. A fractional-rejection method was applied to determine the apparent pore size distribution of IX membranes and the selectivity coefficient was used to calculate apparent charges of NOM. The major apparent pore size distribution (PDS) of the IX membrane used in this study lay in the range 100-200 mass units. The apparent charge of the NOM used was 5.5 (dimensionless).  相似文献   

7.
The objective of this study was to evaluate the effects of operating modes, membrane materials and pore size on natural organic matter (NOM) fouling. A range of flat sheet microfiltration (MF) and ultrafiltration (UF) membranes were tested under conditions of various constant pressure and constant flux filtration modes. Based on experimental filtration profiles, molecular weight (MW) distributions of NOM obtained using high performance size exclusion chromatography (HPSEC) and autopsies of fouled membranes using force emission scanning electron microscopy (FESEM), it was concluded that medium to low MW component of NOM (300–1,000 Da) is responsible for the initiation of fouling, where bulk of the fouling observed is due to very high MW ‘colloidal’ NOM (>50,000 Da). This two stage fouling phenomenon was in good agreement with classical blocking laws. As a general observation hydrophilic membranes were less prone to NOM fouling. A comparison of constant pressure and constant flux tests confirmed that modest constant flux, as used in industry, provided the most beneficial conditions.  相似文献   

8.
《分离科学与技术》2012,47(7):1331-1344
Abstract

For more efficient use of membrane technology in water treatment, it is essential to understand more about the fouling that requires chemical cleaning to be eliminated (i.e., irreversible fouling). In this study, five different MF/UF membranes and four types of organic matter collected from different origins were examined in terms of the degree of irreversible membrane fouling. Experimental results demonstrated that the extent of irreversible fouling differed significantly depending on the properties of both the membrane and organic matter. Among the tested membranes, UF membranes made of polyacrylonitrile (PAN) exhibited the best performance in terms of prevention of irreversible fouling. In contrast, MF membranes, especially one made of polyvinylidenefluoride (PVDF), suffered significant irreversible fouling. Conventional methods for characterization of organic matter such as specific ultraviolet absorption (SUVA), XAD fractionation, and excitation‐emission matrix (EEM) were found to be inadequate for prediction of the degree of irreversible fouling. This is because these analytical methods represent an average property of bulk organic matter, while the fouling was actually caused by some specific fractions. It was revealed that hydrophilic fraction of the organic matter was responsible for the irreversible fouling regardless of the type of membranes or organic matter.  相似文献   

9.
The effects of potassium permanganate(KMnO_4)dosing position on the natural organic matter(NOM)removal as well as membrane fouling were investigated in the coagulation/ultrafiltration combined process.KMnO_4 oxidation altered the NOM characteristics in terms of hydrophobicity and molecular weight,and destroyed humic substances originated from terraneous organisms in raw water.The optimal KMnO_4 dosage was 0.5 mg·L~(-1) in the peroxidation enhanced coagulation process with respect to the dissolved organic carbon(DOC)removal.When KMnO_4 was dosed into both upstream and downstream of coagulation,namely in the proposed twoposition dosing mode,coagulation and KMnO_4 oxidation worked individually on the apparent DOC removal.However,compared to the KMnO_4 addition prior to or after coagulation,the two-position dosing mode dramatically alleviated membrane fouling and reduced fouling irreversibility.This was attributed to the change of NOM characteristics as a result of KMnO_4 addition prior to coagulation and the presence of MnO_2 on membrane surface as a result of KMnO_4 addition prior to ultrafiltration.This work may provide useful information for the application of KMnO_4 oxidation in the coagulation/ultrafiltration combined system.  相似文献   

10.
电渗析技术应用于工业废水脱盐时,废水中有机物及其它杂质组分等会造成膜污染,进而影响脱盐性能。电渗析膜污染防治对促进电渗析在工业废水处理中的应用有重要意义。相比于阳离子交换膜,阴离子交换膜更易形成有机污染,且更严重。阴离子交换膜污染主要由腐殖酸、牛血清蛋白、阴离子表面活性剂等有机物造成,污染过程主要受静电作用、亲和作用和几何因素的影响。膜改性提高阴离子交换膜的抗污染性能是电渗析膜污染防治的有效方法,目前已有许多有关膜改性提高阴离子交换膜抗污染性能的报道。膜改性方法主要有化学改性法、等离子体改性法、表面涂覆改性法、电沉积改性法、自聚合改性法及改进基膜结构法等。本工作对阴离子交换膜改性及抗污染性能的研究进展进行了综述,对不同改性方法的优缺点进行了分析和评价。这些改性方法能提高阴膜表面的负电荷密度和亲水性、降低膜表面粗糙度和基膜含水率等,因此可以改善阴离子交换膜的抗污染性能。然而,目前研究获得的改性阴离子交换膜仍存在修饰层不稳定、抗污染性能不理想和性能测试不系统等缺点,需进一步优化改性方法、改性工艺、组分修饰及性能测试等,以获得抗污染性能稳定且效果良好的改性阴离子交换膜。  相似文献   

11.
Natural surface waters in Algarve, Portugal, have important seasonal variations in natural organic matter (NOM) content, that influences ultrafiltration (UF) performance. This paper addresses the evaluation of the pH adjustment for seasonal control of UF fouling at a laboratory scale, using a plate and frame polysulphone membrane of 47 kDa MWCO. Results of two types of natural water (clear water, 3-5 NTU, and turbid water, 33-34.6 NTU) and three different water pH values (acid, neutral and basic) demonstrated that the pH adjustment could be used for seasonal control of UF fouling: when the water has less NOM (in dry periods, clear water), the acid pH will improve the UF performance, while during and after intense rainfall periods (turbid water with high NOM concentration) basic pH will be advantageous, because it minimizes membrane fouling. This behaviour is explained for clear water in terms of charge effects on membrane size. For turbid water, the electrostatic repulsion between membrane surface and NOM and turbidity particles is reduced at pH 4.13 and protonation of the NOM functional groups decreases the hydrodynamic radii of humic substances while increasing their hydrophobicity and their tendency to adsorb. Therefore, a dense fouling layer develops and flux is lower at pH 4.13 than at pH 8.33. These results together with the observed raw water feed concentrations decline and rejection decrease with WRR confirm the extensive adsorption on the membrane enhanced by the moderate hardness cation of this water.  相似文献   

12.
综述了工业废水电渗析体系膜污染类型、性质、影响因素等的研究进展. 无机污染主要是Ca2+, Mg2+或其他高价离子在离子膜表面或内部形成的结垢现象,原理是极化或溶液过饱和形成沉淀. 有机污染是由蛋白、腐植酸、表面活性剂及大分子有机物在离子膜表面沉积或渗透到膜内部而形成,原因主要是带负电荷的有机物与阴膜荷正电基团的静电作用及带苯环有机物与基膜的亲和作用,其次是有机物分子大小与膜的网络结构的作用. 膜污染形成及其性质与施加电流、共存组分、温度、pH值和运行时间等密切相关,可造成离子膜导电性、离子交换容量、水含量和极限电流密度等减小,且有机污染对电渗析性能的影响比无机污染更严重. 由有机物凝胶层形成的膜污染可用电渗析膜污染指数定量描述.  相似文献   

13.
Fouling tendency in electrodialysis was investigated using the electrochemical and physical properties of the foulants and ion exchange membranes. It was found that bovine serum albumin (BSA), a large molecular weight protein, fouled the AMX membrane irreversibly by deposition on the membrane surface. Electrodialysis experiments of lactate with 1.0 wt% of BSA were performed using the square wave powers at different frequencies to examine the pulsing power influences as a fouling mitigation method, and the results were compared with the data obtained using the DC power. Reduced fouling potentials were observed when the square wave powers were used in the electrodialysis of lactate and confirmed the membrane fouling index for electrodialysis (EDMFI). The pulsing electric fields enhanced the mobility of the charged particles in the fouling layer and decreased the electric resistance of the electrodialysis cell. It was clearly observed that the pulsing electric fields with different frequencies reduced the fouling potentials, and consequently the power consumption was reduced significantly as a fouling mitigation method.  相似文献   

14.
In this work two new types of anion exchange membranes having pore sizes of macro dimensions are described. Static and dynamic fouling resistance to common large anions found in surface waters is evaluated. Improvements over conventional microporous anion membrane types are discussed with respect to electrodialysis.  相似文献   

15.
Interest in thin‐film membranes with properties specially tailored to the respective separation process is growing. In order to obtain such membranes with high permselectivity and fouling resistance, established membrane systems are combined with new building blocks. Star polymers are a class of promising building blocks. In this study, star polymers with anion exchange groups of variable molecular weight and low polydispersity were synthesized by atom transfer radical polymerization. The anion exchange groups were tertiary amino and quaternary ammonium groups. The resulting star polymers were integrated into polyamide thin‐film composite membranes using interfacial polymerization.  相似文献   

16.
Sangyoup Lee 《Desalination》2005,173(2):131-142
The characteristic changes in the natural organic matter (NOM), from the feed to the permeate, due to nanofiltration (NF) and tight-ultrafiltration (UF), were investigated in terms of size (molecular weight), structure (hydrophobic and hydrophilic fractions), and functionality (charge density in terms of carboxylic acidity). These characteristic changes were expected to be associated with the reactivity of the disinfection by-products (DBP), fractions of biodegradable dissolved organic carbon (BDOC), and assimilable organic carbon (AOC) relative to the total organic carbon. The BDOC and AOC analyses demonstrated that the NOM included in the NF and tight-UF permeates were more biodegradable than those included in the feed waters, which were relatively hydrophilic and smaller, than those in the feed waters. The influence of the hydrodynamic operating condition in terms of the J0/k ratio on the characteristics of the NOM included in the NF and tight-UF permeates was also demonstrated. In addition, the effects of the pH, ionic strength, and calcium ions on the specific UV absorbance (SUVA) values of the NOM in each of the feed and permeate waters, were demonstrated for a better understanding of the above characteristic changes, and to determine the applicability of the SUVA analysis for the characterization of the NOM.  相似文献   

17.
Y. Bessiere  E. Goslan 《Desalination》2009,249(1):182-1500
Natural organic matter (NOM) has been identified as a major factor affecting membrane processes performances, but its impact is difficult to quantify from global parameters such as organic carbon content. The extent of fouling due to the different fractions of NOM from surface water has been examined in dead-end ultrafiltration using criteria such as flux decline and irreversibility in regard with organic matter rejection. The most important flux decline was observed during the filtration of the hydrophilic acids fraction whereas fulvic acids led to the most irreversible fouling. Furthermore, the hydrophilic fraction lost its fouling character when mixed with other fractions underlining that interactions between numerous components are possibly more important than the composition itself.  相似文献   

18.
为考察水体中天然有机物(NOM)对纳滤膜性能产生的影响,以腐殖酸(HA)、牛血清蛋白(BSA)和海藻酸钠(SA)分别模拟水中常见NOM,腐殖质、蛋白质和多糖,对国产NF-1812纳滤膜进行单组分及其混合物定性定量有机污染及清洗实验。结果表明,有机污染造成膜通量下降,膜污染程度为SA>HA>BSA;NOM截留率可稳定在99.2%~99.6%;膜污染阻力主要为浓差极化阻力,其次是凝胶层阻力和内部污染阻力,有机污染液综合黏度和综合含量越大,浓差极化阻力的比例越高;对多组分有机污染膜进行错流速度9 cm/s的物理水力清洗和pH=10.0的质量分数分别为0.1%的NaOH+0.025%Na-SDS化学药剂清洗,膜通量、NOM截留率、苦咸水截留率、SEM成像均恢复至原膜状态,纳滤膜清洗效果良好,适用于中国西北苦咸水地区。  相似文献   

19.
天然有机物(NOM)广泛存在于天然水体中,对纳滤处理过程产生较大影响。该文在介绍NOM的组成和物化性质的基础上,讨论了NOM对截留率和膜通量的影响,阐述了纳滤过程中NOM的亲、疏水性,浓差极化效应,静电排斥作用,氢键作用,二价离子络合等对纳滤过程的影响机理,对提高纳滤膜过滤性能有重要意义。  相似文献   

20.
Huangpu River water treatment by microfiltration with ozone pretreatment   总被引:1,自引:0,他引:1  
With the promulgation of more stringent regulations to guarantee the quality of drinking water, low pressure membrane processes are nowadays considered for surface water treatment. But these membranes are sensitive to fouling. In this study ozone is introduced to pretreatment for membrane filtration to get a high quality permeate and improve membrane performance. The organic matter characteristics, such as AMWD of organic matter, hydrophilic/hydrophobic fractions were studied with ozone oxidation. Results show that for Huangpu River water, ozone oxidation offers high percentage of UV absorbance removal than DOC removal. Highest removal of DOC and UV254 of 10% and 71% respectively were observed. The dominant organic matter oxidized by ozone was 2-7.0 kDa in terms of molecule distribution investigation. Ozone oxidizes more hydrophobic fraction to hydrophilic one. Changes of organic matter composition improved membrane flux. There is the optimal dosage with ozone of 1.5 mgO3/L made membrane flux maximum during 0.5-3.0 mgO3/L ozone dosage. Ozone oxidization provided degradation of macromolecule organic matter, which is responsible to membrane fouling, to small molecule organic substance. Study about the chemical cleaning of the fouled membrane also supports the point that membrane fouling is produced by the organic substance with high molecule weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号