首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach to solve numerically transport equations for plasmas with spontaneously arising and arbitrarily located transport barriers, regions with a strongly reduced transfer of energy, is proposed. The transport equations are written in a form conserving heat flux and solved numerically by using piecewisely exact analytical solutions of linear differential equations. Compared to standard methods, this approach allows to reduce significantly the number of operations required to obtain a converged solution with a heat conductivity changing abruptly at a critical temperature gradient and to use large time steps in modeling the formation and dynamics of transport barriers. Computations for the tokamak JET are done.  相似文献   

2.
We discuss the numerical solution of eigenvalue problems for systems of (regular) coupled Schrödinger equations. Using a high order CPM (abbreviation for piecewise Constant (reference potential) Perturbation Method) in a shooting procedure, eigenvalues can be computed accurately. A generalization of the Prüfer method for scalar Sturm-Liouville problems makes the whole procedure more robust and allows us to specify the required eigenvalue by its index.  相似文献   

3.
In this paper, we derive a 6-point multisymplectic Preissman scheme for the regularized long-wave equation from its Bridges' multisymplectic form. Backward error analysis is implemented for the new scheme. The performance and the efficiency of the new scheme are illustrated by solving several test examples. The obtained results are presented and compared with previous methods. Numerical results indicate that the new multisymplectic scheme can not only obtain satisfied solutions, but also keep three invariants of motion very well.  相似文献   

4.
In this paper we present a new multi-derivative or Obrechkoff one-step method for the numerical solution to an one-dimensional Schrödinger equation. By using trigonometrically-fitting method (TFM), we overcome the traditional Obrechkoff one-step method (or called as the non-TFM) for its poor-accuracy in the resonant state. In order to demonstrate the excellent performance for the resonant state, we consider only the simplest TFM, of which the local truncation error (LTE) is of O(h7), a little higher than the one of the traditional Numerov method of O(h6), and only the first- and second-order derivatives of the potential function are needed. In the new method, in order to solve two unknowns, wave function and its first-order derivative, we use a pair of two symmetrically linear-independent one-step difference equations. By applying it to the well-known Woods-Saxon's potential problem, we find that the TFM can surpass the non-TFM by five orders for the highest resonant state, and surpass Numerov method by eight orders. On the other hand, because of the small error constant, the accuracy improvement to the ground state is also remarkable, and the numerical result obtained by TFM can be four to five orders higher than the one by Numerov method.  相似文献   

5.
The nonlinear Klein-Gordon equation describes a variety of physical phenomena such as dislocations, ferroelectric and ferromagnetic domain walls, DNA dynamics, and Josephson junctions. We derive approximate expressions for the dispersion relation of the nonlinear Klein-Gordon equation in the case of strong nonlinearities using a method based on the tension spline function and finite difference approximations. The resulting spline difference schemes are analyzed for local truncation error, stability and convergence. It has been shown that by suitably choosing the parameters, we can obtain two schemes of O(k2+k2h2+h2) and O(k2+k2h2+h4). In the end, some numerical examples are provided to demonstrate the effectiveness of the proposed schemes.  相似文献   

6.
7.
A numerical procedure for an inverse problem of determination of unknown coefficients in a class of parabolic differential equations is presented. The approach of the proposed method is to approximate unknown coefficients by a piecewise linear function whose coefficients are determined from the solution of minimization problem based on the overspecified data. Some numerical examples are presented.  相似文献   

8.
In this paper, how to overcome the barrier for a finite difference method to obtain the numerical solutions of a one-dimensional Schrödinger equation defined on the infinite integration interval accurate than the computer precision is discussed. Five numerical examples of solutions with the error less than 10−50 and 10−30 for the bound and resonant state, respectively, obtained by the Obrechkoff one-step method implemented in the multi precision mode, which include the harmonic oscillator, the Pöschl-Teller potential, the Morse potential and the Woods-Saxon potential, demonstrate that the finite difference method can yield the eigenvalues of a complex potential with an arbitrarily desired precision within a reasonable efficiency.  相似文献   

9.
A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak x-point geometry, the code is able to simulate a wide range of fluid models (magnetised and unmagnetised) involving an arbitrary number of scalar and vector fields, in a wide range of geometries. Time evolution is fully implicit, and 3rd-order WENO schemes are implemented. Benchmarks are presented for linear and non-linear problems (the Orszag-Tang vortex) showing good agreement. Performance of the code is tested by scaling with problem size and processor number, showing efficient scaling to thousands of processors.Linear initial-value simulations of ELMs using reduced ideal MHD are presented, and the results compared to the ELITE linear MHD eigenvalue code. The resulting mode-structures and growth-rate are found to be in good agreement (γBOUT++=0.245ωA, γELITE=0.239ωA, with Alfvénic timescale 1/ωA=R/VA). To our knowledge, this is the first time dissipationless, initial-value simulations of ELMs have been successfully demonstrated.  相似文献   

10.
A FORTRAN 77 program is presented for calculating with the given accuracy eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program calculates also potential matrix elements - integrals of the eigenfunctions multiplied by their first derivatives with respect to the parameter. Eigenvalues and matrix elements computed by the ODPEVP program can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Commun. 179 (2008) 685-693]. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials, a 3D-model of a hydrogen atom in a homogeneous magnetic field and a hydrogen atom on a three-dimensional sphere.

Program summary

Program title: ODPEVPCatalogue identifier: AEDV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 3001No. of bytes in distributed program, including test data, etc.: 24 195Distribution format: tar.gzProgramming language: FORTRAN 77Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IVOperating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XPRAM: depends on
1.
the number and order of finite elements;
2.
the number of points; and
3.
the number of eigenfunctions required.
Test run requires 4 MBClassification: 2.1, 2.4External routines: GAULEG [3]Nature of problem: The three-dimensional boundary problem for the elliptic partial differential equation with an axial symmetry similar to the Schrödinger equation with the Coulomb and transverse oscillator potentials is reduced to the two-dimensional one. The latter finds wide applications in modeling of photoionization and recombination of oppositively charged particles (positrons, antiprotons) in the magnet-optical trap [4], optical absorption in quantum wells [5], and channeling of likely charged particles in thin doped films [6,7] or neutral atoms and molecules in artificial waveguides or surfaces [8,9]. In the adiabatic approach [10] known in mathematics as Kantorovich method [11] the solution of the two-dimensional elliptic partial differential equation is expanded over basis functions with respect to the fast variable (for example, angular variable) and depended on the slow variable (for example, radial coordinate ) as a parameter. An averaging of the problem by such a basis leads to a system of the second-order ordinary differential equations which contain potential matrix elements and the first-derivative coupling terms (see, e.g., [12,13,14]). The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program developed calculates potential matrix elements - integrals of the eigenfunctions multiplied by their derivatives with respect to the parameter. These matrix elements can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [1,2].Solution method: The parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions is solved by the finite element method using high-order accuracy approximations [15]. The generalized algebraic eigenvalue problem AF=EBF with respect to a pair of unknown (E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [16]. First derivatives of the eigenfunctions with respect to the parameter which contained in potential matrix elements of the coupled system equations are obtained by solving the inhomogeneous algebraic equations. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials described in [1,17,18], a 3D-model of a hydrogen atom in a homogeneous magnetic field described in [14,19] and a hydrogen atom on a three-dimensional sphere [20].Restrictions: The computer memory requirements depend on:
1.
the number and order of finite elements;
2.
the number of points; and
3.
the number of eigenfunctions required.
Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see sections below and listing for details). The user must also supply DOUBLE PRECISION functions POTCCL and POTCC1 for evaluating potential function U(ρ,z) of Eq. (1) and its first derivative with respect to parameter ρ. The user should supply DOUBLE PRECISION functions F1FUNC and F2FUNC that evaluate functions f1(z) and f2(z) of Eq. (1). The user must also supply subroutine BOUNCF for evaluating the parametric third type boundary conditions.Running time: The running time depends critically upon:
1.
the number and order of finite elements;
2.
the number of points on interval [zmin,zmax]; and
3.
the number of eigenfunctions required.
The test run which accompanies this paper took 2 s with calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.References:
[1]
O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Comm. 177 (2007) 649-675
[2]
O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Comm. 179 (2008) 685-693.
[3]
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986.
[4]
O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, V.L. Derbov, L.A. Melnikov, V.V. Serov, Phys. Rev. A 77 (2008) 034702-1-4.
[5]
E.M. Kazaryan, A.A. Kostanyan, H.A. Sarkisyan, Physica E 28 (2005) 423-430.
[6]
Yu.N. Demkov, J.D. Meyer, Eur. Phys. J. B 42 (2004) 361-365.
[7]
P.M. Krassovitskiy, N.Zh. Takibaev, Bull. Russian Acad. Sci. Phys. 70 (2006) 815-818.
[8]
V.S. Melezhik, J.I. Kim, P. Schmelcher, Phys. Rev. A 76 (2007) 053611-1-15.
[9]
F.M. Pen'kov, Phys. Rev. A 62 (2000) 044701-1-4.
[10]
M. Born, X. Huang, Dynamical Theory of Crystal Lattices, The Clarendon Press, Oxford, England, 1954.
[11]
L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis, Wiley, New York, 1964.
[12]
U. Fano, Colloq. Int. C.N.R.S. 273 (1977) 127;
A.F. Starace, G.L. Webster, Phys. Rev. A 19 (1979) 1629-1640.
[13]
C.V. Clark, K.T. Lu, A.F. Starace, in: H.G. Beyer, H. Kleinpoppen (eds.), Progress in Atomic Spectroscopy, Part C, Plenum, New York, 1984, pp. 247-320.
[14]
O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524.
[15]
A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64.
[16]
K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982.
[17]
O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269.
[18]
Yu.A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361.
[19]
O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Comm. 178 (2008) 301-330.
[20]
A.G. Abrashkevich, M.S. Kaschiev, S.I. Vinitsky, J. Comp. Phys. 163 (2000) 328-348.
  相似文献   

11.
In order to improve the efficiency and accuracy of the previous Obrechkoff method, in this paper we put forward a new kind of P-stable three-step Obrechkoff method of O(h10) for periodic initial-value problems. By using a new structure and an embedded high accurate first-order derivative formula, we can avoid time-consuming iterative calculation to obtain the high-order derivatives. By taking advantage of new trigonometrically-fitting scheme we can make both the main structure and the first-order derivative formula to be P-stable. We apply our new method to three periodic problems and compare it with the previous three Obrechkoff methods. Numerical results demonstrate that our new method is superior over the previous ones in accuracy, efficiency and stability.  相似文献   

12.
13.
A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented.

Program summary

Program title:POTHMFCatalogue identifier:AEAA_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.htmlProgram obtainable from:CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.:8123No. of bytes in distributed program, including test data, etc.:131 396Distribution format:tar.gzProgramming language:FORTRAN 77Computer:Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IVOperating system:OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XPRAM:Depends on
1.
the number of radial differential equations;
2.
the number and order of finite elements;
3.
the number of radial points.
Test run requires 4 MBClassification:2.5External routines:POTHMF uses some Lapack routines, copies of which are included in the distribution (see README file for details).Nature of problem:In the multi-channel adiabatic approach the Schrödinger equation for a hydrogen-like atom in a homogeneous magnetic field of strength γ (γ=B/B0, B0≅2.35×105 T is a dimensionless parameter which determines the field strength B) is reduced by separating the radial coordinate, r, from the angular variables, (θ,φ), and using a basis of the angular oblate spheroidal functions [3] to a system of second-order ordinary differential equations which contain first-derivative coupling terms [4]. The purpose of this program is to calculate potential curves and matrix elements of radial coupling needed for calculating the low-lying bound and scattering states of hydrogen-like atoms in a homogeneous magnetic field of strength 0<γ?1000 within the adiabatic approach [5]. The program evaluates also asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem needed to extract from the R-matrix a required symmetric shortrange open-channel reaction matrix K [6] independent from matching point [7]. In addition, the program computes the dipole transition matrix elements in the length form between the basis functions that are needed for calculating the dipole transitions between the low-lying bound and scattering states and photoionization cross sections [8].Solution method:The angular oblate spheroidal eigenvalue problem depending on the radial variable is solved using a series expansion in the Legendre polynomials [3]. The resulting tridiagonal symmetric algebraic eigenvalue problem for the evaluation of selected eigenvalues, i.e. the potential curves, is solved by the LDLT factorization using the DSTEVR program [2]. Derivatives of the eigenfunctions with respect to the radial variable which are contained in matrix elements of the coupled radial equations are obtained by solving the inhomogeneous algebraic equations. The corresponding algebraic problem is solved by using the LDLT factorization with the help of the DPTTRS program [2]. Asymptotics of the matrix elements at large values of radial variable are computed using a series expansion in the associated Laguerre polynomials [9]. The corresponding matching points between the numeric and asymptotic solutions are found automatically. These asymptotics are used for the evaluation of the asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem [7]. As a test desk, the program is applied to the calculation of the energy values of the ground and excited bound states and reaction matrix of multi-channel scattering problem for a hydrogen atom in a homogeneous magnetic field using the KANTBP program [10].Restrictions:The computer memory requirements depend on:
1.
the number of radial differential equations;
2.
the number and order of finite elements;
3.
the total number of radial points.
Restrictions due to dimension sizes can be changed by resetting a small number of PARAMETER statements before recompiling (see Introduction and listing for details).Running time:The running time depends critically upon:
1.
the number of radial differential equations;
2.
the number and order of finite elements;
3.
the total number of radial points on interval [rmin,rmax].
The test run which accompanies this paper took 7 s required for calculating of potential curves, radial matrix elements, and dipole transition matrix elements on a finite-element grid on interval [rmin=0, rmax=100] used for solving discrete and continuous spectrum problems and obtaining asymptotic regular and irregular matrix radial solutions at rmax=100 for continuous spectrum problem on the Intel Pentium IV 2.4 GHz. The number of radial differential equations was equal to 6. The accompanying test run using the KANTBP program took 2 s for solving discrete and continuous spectrum problems using the above calculated potential curves, matrix elements and asymptotic regular and irregular matrix radial solutions. Note, that in the accompanied benchmark calculations of the photoionization cross-sections from the bound states of a hydrogen atom in a homogeneous magnetic field to continuum we have used interval [rmin=0, rmax=1000] for continuous spectrum problem. The total number of radial differential equations was varied from 10 to 18.References:
[1]
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986.
[2]
http://www.netlib.org/lapack/.
[3]
M. Abramovits, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
[4]
U. Fano, Colloq. Int. C.N.R.S. 273 (1977) 127; A.F. Starace, G.L. Webster, Phys. Rev. A 19 (1979) 1629-1640; C.V. Clark, K.T. Lu, A.F. Starace, in: H.G. Beyer, H. Kleinpoppen (Eds.), Progress in Atomic Spectroscopy, Part C, Plenum, New York, 1984, pp. 247-320; U. Fano, A.R.P. Rau, Atomic Collisions and Spectra, Academic Press, Florida, 1986.
[5]
M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352; O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, V.V. Serov, T.V. Tupikova, S.I. Vinitsky, Proc. SPIE 6537 (2007) 653706-1-18.
[6]
M.J. Seaton, Rep. Prog. Phys. 46 (1983) 167-257.
[7]
M. Gailitis, J. Phys. B 9 (1976) 843-854; J. Macek, Phys. Rev. A 30 (1984) 1277-1278; S.I. Vinitsky, V.P. Gerdt, A.A. Gusev, M.S. Kaschiev, V.A. Rostovtsev, V.N. Samoylov, T.V. Tupikova, O. Chuluunbaatar, Programming and Computer Software 33 (2007) 105-116.
[8]
H. Friedrich, Theoretical Atomic Physics, Springer, New York, 1991.
[9]
R.J. Damburg, R.Kh. Propin, J. Phys. B 1 (1968) 681-691; J.D. Power, Phil. Trans. Roy. Soc. London A 274 (1973) 663-702.
[10]
O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Comm. 177 (2007) 649-675.
  相似文献   

14.
A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials.

Program summary

Program title: KANTBPCatalogue identifier: ADZH_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 4224No. of bytes in distributed program, including test data, etc.: 31 232Distribution format: tar.gzProgramming language: FORTRAN 77Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IVOperating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XPRAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MBClassification: 2.1, 2.4External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986]Nature of problem: In the hyperspherical adiabatic approach [J. Macek, J. Phys. B 1 (1968) 831-843; U. Fano, Rep. Progr. Phys. 46 (1983) 97-165; C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142], a multi-dimensional Schrödinger equation for a two-electron system [A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Comm. 90 (1995) 311-339] or a hydrogen atom in magnetic field [M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite-element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions for such systems of coupled differential equations.Solution method: The boundary problems for coupled differential equations are solved by the finite-element method using high-order accuracy approximations [A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns (E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. The generalized algebraic eigenvalue problem (AEB)F=λDF with respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDLT factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982]. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials described in [Yu. A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361; O. Chuluunbaatar, A.A. Gusev, S.Y. Larsen, S.I. Vinitsky, J. Phys. A 35 (2002) L513-L525; N.P. Mehta, J.R. Shepard, Phys. Rev. A 72 (2005) 032728-1-11; O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269]. For this benchmark model the needed analytical expressions for the potential matrix elements and first-derivative coupling terms, their asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system.Restrictions: The computer memory requirements depend on:
(a) the number of differential equations;
(b) the number and order of finite-elements;
(c) the total number of hyperradial points; and
(d) the number of eigensolutions required.
Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Long Write-Up and listing for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMSC (when solving the scattering problem) that evaluate the asymptotics of the radial wave functions at the right boundary point in case of a boundary condition of the third type, respectively.Running time: The running time depends critically upon:
(a) the number of differential equations;
(b) the number and order of finite-elements;
(c) the total number of hyperradial points on interval [0,ρmax]; and
(d) the number of eigensolutions required.
The test run which accompanies this paper took 28.48 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.  相似文献   

15.
Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all).

Program summary

Program title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxialCatalogue identifier: AEDU_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 122 907No. of bytes in distributed program, including test data, etc.: 609 662Distribution format: tar.gzProgramming language: FORTRAN 77 and Fortran 90/95Computer: PCOperating system: Linux, UnixRAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix)Classification: 2.9, 4.3, 4.12Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems.Additional comments: This package consists of 12 programs, see “Program title”, above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below.Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix).

Program summary (1)

Title of program: imagtime1d.FTitle of electronic file: imagtime1d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 1 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (2)

Title of program: imagtimecir.FTitle of electronic file: imagtimecir.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 1 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (3)

Title of program: imagtimesph.FTitle of electronic file: imagtimesph.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 1 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (4)

Title of program: realtime1d.FTitle of electronic file: realtime1d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (5)

Title of program: realtimecir.FTitle of electronic file: realtimecir.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (6)

Title of program: realtimesph.FTitle of electronic file: realtimesph.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (7)

Title of programs: imagtimeaxial.F and imagtimeaxial.f90Title of electronic file: imagtimeaxial.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Few hours on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (8)

Title of program: imagtime2d.F and imagtime2d.f90Title of electronic file: imagtime2d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Few hours on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (9)

Title of program: realtimeaxial.F and realtimeaxial.f90Title of electronic file: realtimeaxial.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 4 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time Hours on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (10)

Title of program: realtime2d.F and realtime2d.f90Title of electronic file: realtime2d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 4 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Hours on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (11)

Title of program: imagtime3d.F and imagtime3d.f90Title of electronic file: imagtime3d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 4 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Few days on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (12)

Title of program: realtime3d.F and realtime3d.f90Title of electronic file: realtime3d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum Ram Memory: 8 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Days on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.  相似文献   

16.
A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675].

Program summary

Program title: KANTBPCatalogue identifier: ADZH_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 20 403No. of bytes in distributed program, including test data, etc.: 147 563Distribution format: tar.gzProgramming language: FORTRAN 77Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IVOperating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XPRAM: This depends on
1.
the number of differential equations;
2.
the number and order of finite elements;
3.
the number of hyperradial points; and
4.
the number of eigensolutions required.
The test run requires 2 MBClassification: 2.1, 2.4External routines: GAULEG and GAUSSJ [2]Nature of problem: In the hyperspherical adiabatic approach [3-5], a multidimensional Schrödinger equation for a two-electron system [6] or a hydrogen atom in magnetic field [7-9] is reduced by separating radial coordinate ρ from the angular variables to a system of the second-order ordinary differential equations containing the potential matrix elements and first-derivative coupling terms. The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions of the continuum spectrum for such systems of coupled differential equations on finite intervals of the radial variable ρ∈[ρmin,ρmax]. This approach can be used in the calculations of effects of electron screening on low-energy fusion cross sections [10-12].Solution method: The boundary problems for the coupled second-order differential equations are solved by the finite element method using high-order accuracy approximations [13]. The generalized algebraic eigenvalue problem AF=EBF with respect to pair unknowns (E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [14]. The generalized algebraic eigenvalue problem (AEB)F=λDF with respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy value, E, is solved by the LDLT factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [14]. As a test desk, the program is applied to the calculation of the reaction matrix and corresponding radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field described in [9] on finite intervals of the radial variable ρ∈[ρmin,ρmax]. For this benchmark model the required analytical expressions for asymptotics of the potential matrix elements and first-derivative coupling terms, and also asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra system.Restrictions: The computer memory requirements depend on:
1.
the number of differential equations;
2.
the number and order of finite elements;
3.
the total number of hyperradial points; and
4.
the number of eigensolutions required.
Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Section 3 and [1] for details). The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should also supply subroutines ASYMEV (when solving the eigenvalue problem) or ASYMS0 and ASYMSC (when solving the scattering problem) which evaluate asymptotics of the radial wave functions at left and right boundary points in case of a boundary condition of the third type for the above problems.Running time: The running time depends critically upon:
1.
the number of differential equations;
2.
the number and order of finite elements;
3.
the total number of hyperradial points on interval [ρmin,ρmax]; and
4.
the number of eigensolutions required.
The test run which accompanies this paper took 2 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.References:[1] O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; http://cpc.cs.qub.ac.uk/summaries/ADZHv10.html.[2] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986.[3] J. Macek, J. Phys. B 1 (1968) 831-843.[4] U. Fano, Rep. Progr. Phys. 46 (1983) 97-165.[5] C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77-142.[6] A.G. Abrashkevich, D.G. Abrashkevich, M. Shapiro, Comput. Phys. Commun. 90 (1995) 311-339.[7] M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352.[8] O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524.[9] O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Commun. 178 (2007) 301 330; http://cpc.cs.qub.ac.uk/summaries/AEAAv10.html.[10] H.J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327 (1987) 461-468.[11] V. Melezhik, Nucl. Phys. A 550 (1992) 223-234.[12] L. Bracci, G. Fiorentini, V.S. Melezhik, G. Mezzorani, P. Pasini, Phys. Lett. A 153 (1991) 456-460.[13] A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Commun. 85 (1995) 40-64.[14] K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982.  相似文献   

17.
In this paper we present a delicately designed numerical experiment to explore the relationship between the accuracy of the first-order derivative (FOD) formula and the one of the main structure in an Obrechkoff method. We choose three two-step P-stable Obrechkoff methods as the main structure, which are available from the previous published literature, their local truncation error (LTE(h)) ranging from to , and six FOD formulas, of which the former five ones have the similar structures and the sixth is the ‘exact’ value of the FOD, their LTE(h) arranged from to (we will use to represent the order of a LTE(h)), as the main ingredients for our numerical experiment. We survey the numerical results by integrating the Duffing equation without damping and compare them with the ‘exact’ solution, and find out how its numerical accuracy is affected by a FOD formula. The experiment shows that a high accurate FOD formula can greatly improve the numerical accuracy of an Obrechkoff method for a given main structure, and the error in the numerical solution decreases with the order of the LTE(h) of a FOD formula, only when the order of LTE(h) of the FOD formula is equal to or higher than the one of the main structure, the accuracy of the Obrechkoff method is no longer affected by the approximation of the FOD formula.  相似文献   

18.
A semi-Lagrangian code for the solution of the electrostatic drift-kinetic equations in straight cylinder configuration is presented. The code, CYGNE, is part of a project with the long term aim of studying microturbulence in fusion devices. The code has been constructed in such a way as to preserve a good control of the constants of motion, possessed by the drift-kinetic equations, until the nonlinear saturation of the ion-temperature-gradient modes occurs. Studies of convergence with phase space resolution and time-step are presented and discussed. The code is benchmarked against electrostatic Particle-in-Cell codes.  相似文献   

19.
Smoothed particle hydrodynamics: Applications to heat conduction   总被引:2,自引:0,他引:2  
In this paper, we modify the numerical steps involved in a smoothed particle hydrodynamics (SPH) simulation. Specifically, the second order partial differential equation (PDE) is decomposed into two first order PDEs. Using the ghost particle method, consistent estimation of near-boundary corrections for system variables is also accomplished. Here, we focus on SPH equations for heat conduction to verify our numerical scheme. Each particle carries a physical entity (here, this entity is temperature) and transfers it to neighboring particles, thus exhibiting the mesh-less nature of the SPH framework, which is potentially applicable to complex geometries and nanoscale heat transfer. We demonstrate here only 1D and 2D simulations because 3D codes are as simple to generate as 1D codes in the SPH framework. Our methodology can be extended to systems where the governing equations are described by PDEs.  相似文献   

20.
In this paper we will study the importance of the properties of P-stability and Trigonometric-fitting for the numerical integration of the one-dimensional Schrödinger equation. This will be done via the error analysis and the application of the studied methods to the numerical solution of the radial Schrödinger equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号