首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the effects of nanoclay (1–4 wt %) and coupling agent (2 and 4 wt %) loading on the physical and mechanical properties of nanocomposites are investigated. Composites based on polypropylene (PP), bagasse flour, and nanoclay (montmorillonite type) was made by melt compounding and then compression molding. When 1–3 wt % nanoclay was added, the tensile properties increased significantly, but then decreased slightly as the nanoclay content increased to 4%. The impact strength was 6% lower by the addition of 1 wt % nanoclay, it was decreased further when the nanoclay content increased from 1 to 4%. Finally, the water absorption of PP/bagasse composites was lowered with the increase in nanoclay content. Additionally, the coupling agent, 4 wt % MAPP, improved the mechanical and physical properties of the composites more than the 2 wt % MAPP. From these results, we can conclude that addition of nanoclay enables to achieve better physical and mechanical properties in conventional composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
In an effort to determine to what extent natural fiber/plastic composites were recyclable, this study conducted repetitive processing cycles on wood flour/polypropylene composites through extrusion up to three times followed by injection molding. Mechanical properties of the composites, containing 10–50?wt% wood flour and with/without addition of 3?wt% maleic anhydride polypropylene (MAPP) as coupling agent, were evaluated by conducting tensile test, thermal analysis, and water absorption test. Repetitive processing as well as wood content and coupling agent addition influenced physical properties of the composites. MAPP functioned well in improving fiber-matrix adhesion in terms of mechanical properties. Repetitive processing did not deteriorate the composite’s properties; rather opposite effect was shown. Thermal analysis indicated that the alteration in properties was contributed by the molecular condition of the polypropylene matrix. Water absorption increased with the wood flour content but reduced when MAPP was added and with more processing cycles.  相似文献   

3.
The main objective of this research was to study the potential of waste polypropylene and waste wood for making wood plastic composites (WPCs). The effects of nanoclay (NC), microcrystalline cellulose (MCC), and coupling agent (MAPP) on the mechanical and thermal properties were also studied. The results showed that mechanical properties of the composites made with MCC were significantly superior to those of unfilled. Addition of MAPP could enhance the mechanical and thermal properties of the blends, due to the improvement of interface bond between the filler and matrix. The significant improvements in tensile properties of the blends composites made with MAPP and NC were further supported by SEM micrographs. The thermogravimetric analysis indicated that the addition of 5 wt% MAPP and 3 wt% NC significantly increased the thermal stability of the blends compared to the pure PP. MCC could not improve the thermal stability. The experimental results demonstrated that the waste materials used are promising alternative raw materials for making low cost WPCs.  相似文献   

4.
This study examined the differences between formaldehyde‐free wood composite panels made with maleated polyethylene (MAPE) and maleated polypropylene (MAPP) binding agents. Specifically, the study investigated the contrasts of (a) base resin type, PE vs. PP, (b) molecular weight/maleic anhydride content in MAPP binding agents, and (c) the manufacturing methods (reactive extrusion vs. hot press) on the physicomechanical properties of the composites. FTIR and XPS analyses of unmodified and modified wood particles after reactive extrusion with maleated polyolefins provided evidence of chemical bonding between the hydroxyl groups of wood particles and maleated polyolefins. Although extruding the particles before panel pressing gave better internal bond (IB) strength, superior bending properties were obtained through compression molding alone. MAPP‐based panels outperformed MAPE‐based panels in stiffness. Conversely, MAPE increased the IB strength of the panels compared with MAPP. Polymer base resin had no effect on modulus of rupture or screw holding capacity. Differences between the two maleated polypropylene compounds were not significant for any of the mechanical properties tested. Formaldehyde‐free wood composites manufactured in this study often outperformed standard requirements for conventional particleboard, regardless of material composition or manufacturing method used. POLYM. COMPOS., 27:599–607, 2006. © 2006 Society of Plastics Engineers  相似文献   

5.
The effect of oxidized polypropylene (OPP) as new compatibilizer on the water absorption and mechanical properties of wood flour–polypropylene (PP) composites were studied and compared with maleic anhydride grafted polypropylene (MAPP). The oxidation of PP was performed in the molten state in the presence of air. Wood flour, PP, and the compatibilizers (OPP and MAPP) were mixed in an internal mixer at temperature of 190°C. The amorphous composites removed from the mixer were then pressed into plates that had a nominal thickness of 2 mm and nominal dimensions of 15 × 15 cm2 with a laboratory hydraulic hot press at 190°C. Physical and mechanical tests showed that the wood flour–PP composites with OPP exhibited higher flexural and impact properties but lower water absorption than MAPP. All of the composites with 2% compatibilizers (OPP and MAPP) gave higher flexural and impact properties and lower water absorption compared to those with 4% compatibilizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The viability of vinyltrimethoxy silane was investigated as a coupling agent for the manufacture of wood–plastic composites (WPC). The effect of silane pretreatment of the wood flour on the thermal and the dynamic mechanical properties and thermal degradation properties of the composites were studied. Moreover, the effect of organosilane on the properties of composites was compared with the effect of maleated polypropylene (MAPP). DSC studies indicated that the wood flour acts as a PP-nucleating agent, increasing the PP crystallization rate. In general, pretreatment with small amounts of silane improved this behavior in all the WPCs studied. Thermal degradation studies of the WPCs indicated that the presence of wood flour delayed degradation of the PP. Silane pretreatment of the wood flour augmented this effect, though without significantly affecting cellulose degradation. Studies of dynamic mechanical properties revealed that the wood flour (at up to 30 wt %) increased storage modulus values with respect to those of pure PP; in WPCs with a higher wood flour amount, there was no additional increase in storage modulus. Pretreatment of the wood flour with silane basically had no effect on the dynamic mechanical properties of the WPC. These results show that with small amounts of vinyltrimethoxy silane similar properties to the MAPP are reached. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to identify the mechanisms that lead to differences in the mechanical behavior of formulations of polypropylene blended with maleated polypropylene (MAPP) copolymers. MAPP lowered the melting temperature of PP indicating that less stable crystals were formed possibly because of cocrystallization of PP and MAPP. Crystallization kinetics revealed that copolymers do not change the rate of crystal growth, but may retard nucleation leading to a more spherulitic morphology. The dynamic storage modulus slightly increased in the glassy region with the small addition amounts of MAPP, while mechanical dampening systematically decreased with MAPP addition. An analysis of the viscoelastic behavior did not reveal any real differences in molecular coupling around the β‐transition of PP with the addition of the MAPP copolymer. At low addition levels, MAPP does not appear to have a significant impact on the viscoelastic properties of the polymer blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Using bagasse fiber as the reinforcing filler and polypropylene as the thermoplastic matrix polymer, a reinforced composite was prepared, and its mechanical properties examined as a function of the amount of compatibilizing agents used. In the sample preparation, four levels of fiber loading (10, 20, 30, and 40 wt %), three levels of polybutadiene isocyanate (PBNCO) content (0, 2, and 4 wt %) and two levels of maleated polypropylenes (MAPP) content (0 and 3 wt %) as compatibilizing agents were used. The tensile properties of the composites improved as the fiber loading and the compatibilizing agents increased, but the impact strength was significantly decreased. The mechanical study revealed that the positive effect of compatibilizing agents on interfacial bonding. The composites treated with PBNCO showed superior tensile and impact properties than those without treatment. The findings indicated that bagasse as agro‐waste material is a valuable renewable natural resource for composite production and could be utilized as a substitute for wood in composite industries. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Dimensional stability, mechanical properties, and melting and crystallization behavior of polypropylene composites filled with sunflower seed cake (SSC) were investigated. Injection molded composites were prepared from the SSC flour and polypropylene with and without maleic anhydride‐grafted polypropylene (MAPP) at 30, 40, 50, and 60 wt % contents of the SSC flour. Twenty‐eight days thickness swelling and water absorption values of the specimens increased by 43 and 56% as the filler content increased from 30 to 60 wt %, respectively. The flexural modulus of the polypropylene composites increased from 3157 to 4363 MPa as the SSC flour increased from 30 to 60 wt %. The maximum flexural strength 38.4 MPa was observed for 40 wt % SSC flour filled specimens. However, further increment in the SCC flour decreased the flexural strength to 31.4 MPa. The tensile strength of the specimens decreased from 22.5 to 14 MPa while the tensile modulus increased from 3023 to 3677 MPa as the SSC flour increased from 30 to 60 wt %. The dimensional stability and mechanical properties of the composites were significantly improved by the incorporation of the coupling agent (MAPP). The effect of the MAPP addition was more pronounced for the strength than for the modulus. The melting temperature and degree of crystallinity of the neat polypropylene decreased with increasing content of the SSC flour. The degree of crystallinity of filled composites considerably increased with the incorporation of the MAPP. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Wood polypropylene composites (WPC) of different compositions (30, 40, and 50%) have been prepared using maleic anhydride–polypropylene copolymer of different percentage (5 and 10% relative to their wood fiber content). Tensile, flexural, fracture toughness, and impact test of the prepared WPC were carried out. From the results, it is observed that the hard wood fiber–polypropylene composites, by using maleated polypropylene (MAH-PP), show comparatively better performance to soft wood fiber–polypropylene composites. Tensile strength and charpy impact strength have been increased to a maximum of 50 and 20%, respectively. The damping index has been decreased by 60% when 10% of MAH-PP has been used. Water absorption and scanning electron microscopy of the composites are also investigated.  相似文献   

11.
The mechanical properties and morphology of polypropylene/wood flour (PP/WF) composites with different impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. Two different ethylene/propylene/diene terpolymers (EPDM) and one maleated styrene–ethylene/butylene–styrene triblock copolymer (SEBS–MA) have been used as impact modifiers in the PP/WF systems. All three elastomers increased the impact strength of the PP/WF composites but the addition of maleated EPDM and SEBS gave the greatest improvements in impact strength. Addition of MAPP did not affect the impact properties of the composites but had a positive effect on the composite unnotched impact strength when used together with elastomers. Tensile tests showed that MAPP had a negative effect on the elongation at break and a positive effect on tensile strength. The impact modifiers were found to decrease the stiffness of the composites. Scanning electron microscopy showed that maleated EPDM and SEBS had a stronger affinity for the wood surfaces than did the unmodified EPDM. The maleated elastomers are, therefore, expected to form a flexible interphase around the wood particles giving the composites better impact strength. MAPP further enhanced adhesion between WF and impact-modified PP systems. EPDM and EPDM–MA rubber domains were homogeneously dispersed in the PP matrix, the diameter of domains being between 0.1–1 μm. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1503–1513, 1998  相似文献   

12.
Water uptake characteristics and some mechanical properties of polypropylene composites containing three types of natural fillers, purified α‐cellulose, wastepaper fibers, and wood flour were studied. The fiber contents were 15, 25, and 35% by weight. Two percent maleic anhydride polypropylene (MAPP) was also added to the mix, as the compatibilizer agent. Mixing process was performed in a Brabender Plasticorder until a constant torque was reached. Composites made out of these combinations were then pressed in a laboratory press and ASTM standard test specimens were cut out of the sheets. Water absorption and tensile tests were performed on these specimens. The results showed a significant difference between the various filler types regarding water uptake. Water uptake also increased by the increase in filler content. Tensile strength and elongation at break in composites declined when compared with pure polypropylene, but their modulus of elasticity increased. Among the three types of fillers, no significant discrepancies were observed in terms of improving mechanical properties in composites. Filler content increase had no drastic effect regarding strength improvement. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 941–946, 2003  相似文献   

13.
Hemp fibers and particles, with different sizes and contents, were used to make hybrid composites based on recycled polypropylene (PP). In particular, the effect of maleated polypropylene (MAPP) addition on the morphology and mechanical properties is reported. The results show that better adhesion is obtained with MAPP addition. In general, fiber content and size had a substantial effect on the tensile, flexural, torsion, and impact properties of the resulting composites. Although, adding MAPP to the samples improved the impact strength of the composites, the values were always lower than neat PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
To quantitatively evaluate the effect of maleic anhydride grafted polypropylene (MAPP) as a coupling agent on interfacial compatibility between wood and polymer in wood/polypropylene (PP) composite, the dielectric constant and dielectric loss factor were measured for poplar (Populus tomentasa Carr.) wood flour/polypropylene (PP) composites prepared with six MAPP loading levels (0.5, 1.0, 1.5, 2.0, 4.0, and 8.0%), and the Cole–Cole plots, the dielectric relaxation strength, the distribution of relaxation time and the activation thermodynamic quantities of the dielectric relaxation based on the reorientation of the methylol groups (CH2OH) in the amorphous region of wood cell wall were further analyzed. The results showed that the dielectric relaxation strength decreased with the MAPP loading and dropped to the lowest at MAPP loading of 2.0%, after which it kept almost constant. It suggested that the internal bonding between wood and PP molecules was the strongest at 2.0% MAPP, therefore the reorientation of the methylol groups in wood became very difficult under the strong hindrance from the long‐chained PP molecules and the physical or/and chemical bonds between MAPP, wood flour, and PP in the composites. The activation free energy ΔE could be served as the indicator to quantitatively evaluate the effect of MAPP on interfacial compatibility of the wood/PP composites. ΔE of 2.0% MAPP modified composites showed the maximal value among all the tested conditions, which was 33.52 kJ mol−1; while the values for 1.5 and 4.0% MAPP modified were 23.35 and 21.75 kJ mol−1. Therefore, excessive MAPP was not beneficial to improve the internal compatibility of wood/PP composites, but had negative effect. POLYM. COMPOS., 35:489–494, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
Wood plastic composites (WPCs) are attracting a lot of interests because they are economic, environmentally friendly, and show fairly good performance. To improve the performance of a wood/polypropylene (PP) composite, an organoclay was incorporated as a nanosize filler in this work. WPCs were prepared by melt blending followed by compression molding, and their performance was investigated by universal testing machine, izod impact tester, dynamic mechanical analyzer, thermal mechanical analyzer, differential scanning calorimetry, and TGA. Maleic anhydride polypropylene copolymer (MAPP) was used to increase compatibility between the PP matrix and wood particles and also improve the dispersion and exfoliation of the organoclay in the PP matrix. XRD analysis showed that the matrix of the WPCs with organoclay had intercalated structure. The SEM images of the WPCs with MAPP showed improved interfacial adhesion between the matrix and wood particles. The degree of water absorption increased with immersion time, but it could be restrained by incorporating MAPP. The performance of the WPCs was improved by the incorporation of the organoclay. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
余旺旺  刘芹  张莹  杨晨  雷文 《中国塑料》2020,34(10):6-11
研究了马来酸酐接枝聚丙烯(MAPP)、乙烯丙烯酸共聚物(EAA)处理对聚丙烯(PP) /小麦秸秆粉(WSP)复合材料性能的影响。结果表明,随着体系中MAPP质量份数的增加,PP/WSP的拉伸强度和弯曲强度均逐渐增大,但冲击强度却先增加后减小,复合材料达到塑化峰的时间逐渐延长;使用EAA后,无论体系中是否已经使用了MAPP,PP/WSP的拉伸、弯曲和冲击强度均可得以提高,特别对于未使用MAPP的体系,效果更加明显,可分别提高65.04 %、45.42 %和6.75 %,储能模量增加,表面疏水性增强,平衡扭矩从13.9 N·m降至11.8 N·m,吸水尺寸变化率及吸水率下降,吸水平衡时间缩短;使用EAA可改善PP/WSP中WSP与PP间的界面结合,改善PP/WSP力学性能、热稳定性能、表面疏水性能、尺寸稳定性能和加工性能,降低其吸水率。  相似文献   

17.
This article concerns the effectiveness of MAPP as a coupling agent in sisal–polypropylene composites. The fiber loading, MAPP concentration, and fiber treatment time influenced the mechanical properties of the composites. It was observed that the composites prepared at 21 volume percent of fibers with 1% MAPP concentration exhibits optimum mechanical strength. SEM investigations confirmed that the increase in properties is caused by improved fiber‐matrix adhesion. The viscoelastic properties of the treated and untreated composites were also studied. From the storage modulus versus temperature plots, an increase in the magnitude of the peaks was observed with the addition of MAPP and fiber reinforcement, thus showing an improvement in stiffness of the treated composites. The damping properties of the composites, however, decreased with the addition of the fibers and MAPP. The thermal properties of the composites were analyzed through DSC and TGA measurements. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1336–1345, 2004  相似文献   

18.
The present study investigates the tensile, flexural, notched Izod impact, and water absorption properties of bagasse and beech reinforced polypropylene (PP) composites as a function of fiber content. The surface of fibers was modified through the use of maleated polypropylene (MAPP) coupling agent. From this study, it was found that mechanical properties increase with an increase in fiber loading in both cases. However, the addition of wood fibers resulted in a decrease in impact strength of the composites. The water absorption property at varying fiber loading was evaluated and found maximum for the BA/PP composites. The weight gains for all specimens were less than 7%. In general, the results showed the usefulness of bagasse fiber as a good alternative and reinforcing agent for composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Kudzu fiber‐reinforced polypropylene composites were prepared, and their mechanical and thermal properties were determined. To enhance the adhesion between the kudzu fiber and the polypropylene matrix, maleic anhydride‐grafted polypropylene (MAPP) was used as a compatibilizer. A continuous improvement in both tensile modulus and tensile strength was observed up to a MAPP concentration of 35 wt %. Increases of 24 and 54% were obtained for tensile modulus and tensile strength, respectively. Scanning electron microscopy (SEM) showed improved dispersion and adhesion with MAPP. Fourier transform infrared (FTIR) spectroscopy showed an increase in hydrogen bonding with an increase in MAPP content. Differential scanning calorimetry (DSC) analysis indicated little change in the melting temperature of the composites with changes in MAPP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1961–1969, 2002  相似文献   

20.
The mechanical properties and morphology of polypropylene (PP) long‐fibre reinforced random poly(propylene‐co‐ethylene) (PPE) composites (50/50 % vol/vol) have been investigated with reference to the fibre diameter with constant length. There is an improvement in the mechanical properties of PPE matrix by incorporation of long PP fibres into the matrix. The elastic modulus of the composite increased with decrease in the fibre diameter to 50 µm, to 0.91 GPa, which was 5 times higher than for pure PPE. However, composite stiffness decreased with decreasing fibre diameter of less than 50 µm and this is discussed in term of the fibre stiffness, packing, stress concentration and aspect ratio. Creep resistance of the composites showed the same behaviour. Morphology of the composites was investigated using scanning electron microscopy. This showed that there was a thin layer of matrix on the reinforcement, which was attributed to good impregnation and wetting of the fibres. Moreover, prediction of tensile modulus using the Cox model correlated well with experimental data. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号