首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We give an algorithm that computes the closest pair in a set ofn points ink-dimensional space on-line, inO(n logn) time. The algorithm only uses algebraic functions and, therefore, is optimal. The algorithm maintains a hierarchical subdivision ofk-space into hyperrectangles, which is stored in a binary tree. Centroids are used to maintain a balanced decomposition of this tree.These authors were supported by the ESPRIT II Basic Research Actions Program, under Contract No. 3075 (project ALCOM).This author was supported in part by the National Science and Engineering Research Council of Canada.  相似文献   

2.
Given a 2k-edge-connected undirected graph, we consider to find a minimum cost orientation that yields a k-arc-connected directed graph. This minimum cost k-arc-connected orientation problem is a special case of the submodular flow problem. Frank (1982) devised a combinatorial algorithm that solves the problem in O(k 2 n 3 m) time, where n and m are the numbers of vertices and edges, respectively. Gabow (1995) improved Frank’s algorithm to run in O(kn 2 m) time by introducing a new sophisticated data structure. We describe an algorithm that runs in O(k 3 n 3+kn 2 m) time without using sophisticated data structures. In addition, we present an application of the algorithm to find a shortest dijoin in O(n 2 m) time, which matches the current best bound.  相似文献   

3.
K. H. Tsai  D. T. Lee 《Algorithmica》1997,18(2):198-216
Given a set ofn nonnegativeweighted circular arcs on a unit circle, and an integerk, thek Best Cust for Circular-Arcs problem, abbreviated as thek-BCCA problem, is to find a placement ofk points, calledcuts, on the circle such that the total weight of the arcs that contain at least one cut is maximized. We first solve a simpler version, thek Best Cuts for Intervals (k-BCI) problem, inO(kn+n logn) time andO(kn) space using dynamic programming. The algorithm is then extended to solve a variation, called thek-restricted BCI problem, and the space complexity of thek-BCI problem can be improved toO(n). Based on these results, we then show that thek-BCCA problem can be solved inO(I(k,n)+nlogn) time, whereI(k, n) is the time complexity of thek-BCI problem. As a by-product, thek Maximum Cliques Cover problem (k>1) for the circular-arc graphs can be solved inO(I(k,n)+nlogn) time. This work was supported in part by the National Science Foundation under Grants CCR-8901815, CCR-9309743, and INT-9207212, and by the Office of Naval Research under Grant No. N00014-93-1-0272.  相似文献   

4.
Tomás Feder 《Algorithmica》1994,11(3):291-319
We present two algorithms for network flow on networks with infinite capacities and finite integer supplies and demands. The first algorithm runs inO(mK) time on networks withm edges, whereK=O(m2/log4 m) is the value of the optimal flow, and can also be applied to the capacitated case by lettingK be the sum of thefinite capacities alone. The second algorithm runs inO(wm logK) time for arbitraryK, where w is a new parameter, thewidth of the network. These algorithms as well as other uses of the notion of width lead to results for several questions on the 2-satisfiability problem: minimizing the weight of a solution, finding the transitive closure, recognizing partial solutions, enumerating all solutions. The results have applications to stable matching, wherew corresponds to the number of people andm to the instance size (usuallym w2).  相似文献   

5.
LetP be a set ofl points in 3-space, and letF be a set ofm opaque rectangular faces in 3-space with sides parallel tox- ory-axis. We present anO(n logn) time andO(n) space algorithm for determining all points inP which are visible from a viewpoint at (0,0,), wheren=l+m. We also present anO(n logn+k) time andO(n) space algorithm for the hidden-line elimination problem for the orthogonal polyhedra together with a viewpoint at (0,0,), wheren is the number of vertices of the polyhedra andk is the number of edge intersections in the projection plane.  相似文献   

6.
Tight lower bounds for certain parameterized NP-hard problems   总被引:1,自引:0,他引:1  
Based on the framework of parameterized complexity theory, we derive tight lower bounds on the computational complexity for a number of well-known NP-hard problems. We start by proving a general result, namely that the parameterized weighted satisfiability problem on depth-t circuits cannot be solved in time no(k)mO(1), where n is the circuit input length, m is the circuit size, and k is the parameter, unless the (t − 1)-st level W[t − 1] of the W-hierarchy collapses to FPT. By refining this technique, we prove that a group of parameterized NP-hard problems, including weighted sat, hitting set, set cover, and feature set, cannot be solved in time no(k)mO(1), where n is the size of the universal set from which the k elements are to be selected and m is the instance size, unless the first level W[1] of the W-hierarchy collapses to FPT. We also prove that another group of parameterized problems which includes weighted q-sat (for any fixed q 2), clique, independent set, and dominating set, cannot be solved in time no(k) unless all search problems in the syntactic class SNP, introduced by Papadimitriou and Yannakakis, are solvable in subexponential time. Note that all these parameterized problems have trivial algorithms of running time either nkmO(1) or O(nk).  相似文献   

7.
The k-MST is a well known NP-hard problem and several approximation algorithms exist to solve this problem with a guaranteed performance bound. A closely related problem, called the bottleneck k-MST (BMST(k)) can however be solved in O(mlogn) time on graph with n nodes and m edges. We propose two algorithms to solve BMST(k), one of complexity O(m+nlogn) and the other of O(m) time. We also consider a generalization of BMST(k) which subsumes many bottleneck problems studied in the literature and show that this generalized problem can also be solved in O(m) time.  相似文献   

8.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

9.
We present a randomized and a deterministic data structure for maintaining a dynamic family of sequences under equality tests of pairs of sequences and creations of new sequences by joining or splitting existing sequences. Both data structures support equality tests inO(1) time. The randomized version supports new sequence creations inO(log2 n) expected time wheren is the length of the sequence created. The deterministic solution supports sequence creations inO(logn(logmlog* m+logn)) time for themth operation. This work was supported by the ESPRIT Basic Research Actions Program, under Contract No. 7141 (Project ALCOM II).  相似文献   

10.
The problem of representing a setU≜{u 1,...,u m} of read-write variables on ann-node distributed-memory parallel computer is considered. It is shown thatU can be represented among then nodes of a variant of the mesh of trees usingO((m/n) polylog(m/n)) storage per node such that anyn-tuple of variables may be accessed inO(logn (log logn)2) time in the worst case form polynomial inn. This work was supported in part by the Joint Services Electronics Program under Contract F49620-87-C-0044 and by IBM under Agreement 12060043. Earlier versions of these results appeared in theProceedings of the 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, October 1989 and in theProceedings of the 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, Crete, July 1990.  相似文献   

11.
Previous research on developing parallel triangulation algorithms concentrated on triangulating planar point sets.O(log3 n) running time algorithms usingO(n) processors have been developed in Refs. 1 and 2. Atallah and Goodrich(3) presented a data structure that can be viewed as a parallel analogue of the sequential plane-sweeping paradigm, which can be used to triangulate a planar point set inO(logn loglogn) time usingO(n) processors. Recently Merks(4) described an algorithm for triangulating point sets which runs inO(logn) time usingO(n) processors, and is thus optimal. In this paper we develop a parallel algorithm for triangulating simplicial point sets in arbitrary dimensions based on the idea of the sequential algorithm presented in Ref. 5. The algorithm runs inO(log2 n) time usingO(n/logn) processors. The algorithm hasO(n logn) as the product of the running time and the number of processors; i.e., an optimal speed-up.  相似文献   

12.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

13.
S. Guha  I. Suzuki 《Algorithmica》1997,17(3):281-307
We consider the following four problems for a setS ofk points on a plane, equipped with the rectilinear metric and containing a setR ofn disjoint rectangular obstacles (so that distance is measured by a shortest rectilinear path avoiding obstacles inR): (a) find aclosest pair of points inS, (b) find anearest neighbor for each point inS, (c) compute the rectilinearVoronoi diagram ofS, and (d) compute a rectilinearminimal spanning tree ofS. We describeO ((n+k) log(n+k))-time sequential algorithms for (a) and (b) based onplane-sweep, and the consideration of geometrically special types of shortest paths, so-calledz-first paths. For (c) we present anO ((n+k) log(n+k) logn)-time sequential algorithm that implements a sophisticateddivide-and-conquer scheme with an addedextension phase. In the extension phase of this scheme we introduce novel geometric structures, in particular so-calledz-diagrams, and techniques associated with the Voronoi diagram. Problem (d) can be reduced to (c) and solved inO ((n+k) log(n+k) logn) time as well. All our algorithms arenear-optimal, as well as easy to implement. An extended abstract appeared inProc. 13th Conf. on the Foundations of Software Technology and Theoretical Computer Science, Bombay, 1993, Springer-Verlag, pp. 218–227. Sumanta Guha was supported in part by a UW-Milwaukee Graduate School Research Committee Award. Ichiro Suzuki was supported in part by the National Science Foundation under Grants CCR-9004346 and IRI-9307506, the Office of Naval Research under Grant N00014-94-1-0284, and an endowed chair supported by Hitachi Ltd. at the Faculty of Engineering Science, Osaka University.  相似文献   

14.
This paper focuses on a linear array ofnnodes withmultiple shared busesas a practically feasible model for parallel processing. Letkbe the number of shared buses. A nonoblivious scheme for mutually exclusive access tokshared buses is proposed. The effectiveness of the scheme is demonstrated by proposing an algorithm for solving a partial sort problem, which can be efficiently executed on the array according to the scheme. Thepartial sort problemwith parametermis the problem of sorting a subsetS′ of a given setS, whereS′ is the set of elements less than or equal to themth smallest element inS. Ifm= 1, then it is solved by an algorithm for finding the smallest element inS, and ifm=n, then it is solved by adapting normal sorting algorithm. The time complexity (9m/k) log2log2n+ 3.467[formula]+O(m/k+ (n/k)1/4) of the proposed algorithm matches a lower bound Ω ([formula]+m/k) with respect tonandk, ifmis small enough to satisfym=O([formula]/log logn).  相似文献   

15.
We consider the problems of selection, routing, and sorting on ann-star graph (withn! nodes), an interconnection network which has been proven to possess many special properties. We identify a tree like subgraph (which we call a “(k, 1,k) chain network”) of the star graph which enables us to design efficient algorithms for the above mentioned problems. We present an algorithm that performs a sequence ofnprefix computations inO(n2) time. This algorithm is used as a subroutine in our other algorithms. We also show that sorting can be performed on then-star graph in timeO(n3) and that selection of a set of uniformly distributednkeys can be performed inO(n2) time with high probability. Finally, we also present a deterministic (nonoblivious) routing algorithm that realizes any permutation inO(n3) steps on then-star graph. There exists an algorithm in the literature that can perform a single prefix computation inO(nlgn) time. The best-known previous algorithm for sorting has a run time ofO(n3lgn) and is deterministic. To our knowledge, the problem of selection has not been considered before on the star graph.  相似文献   

16.
17.
Given a graph G=(V,E) with n vertices and m edges, and a subset T of k vertices called terminals, the Edge (respectively, Vertex) Multiterminal Cut problem is to find a set of at most l edges (non-terminal vertices), whose removal from G separates each terminal from all the others. These two problems are NP-hard for k≥3 but well-known to be polynomial-time solvable for k=2 by the flow technique. In this paper, based on a notion farthest minimum isolating cut, we design several simple and improved algorithms for Multiterminal Cut. We show that Edge Multiterminal Cut can be solved in O(2 l kT(n,m)) time and Vertex Multiterminal Cut can be solved in O(k l T(n,m)) time, where T(n,m)=O(min?(n 2/3,m 1/2)m) is the running time of finding a minimum (s,t) cut in an unweighted graph. Furthermore, the running time bounds of our algorithms can be further reduced for small values of k: Edge 3-Terminal Cut can be solved in O(1.415 l T(n,m)) time, and Vertex {3,4,5,6}-Terminal Cuts can be solved in O(2.059 l T(n,m)), O(2.772 l T(n,m)), O(3.349 l T(n,m)) and O(3.857 l T(n,m)) time respectively. Our results on Multiterminal Cut can also be used to obtain faster algorithms for Multicut: $O((\min(\sqrt{2k},l)+1)^{2k}2^{l}T(n,m))Given a graph G=(V,E) with n vertices and m edges, and a subset T of k vertices called terminals, the Edge (respectively, Vertex) Multiterminal Cut problem is to find a set of at most l edges (non-terminal vertices), whose removal from G separates each terminal from all the others. These two problems are NP-hard for k≥3 but well-known to be polynomial-time solvable for k=2 by the flow technique. In this paper, based on a notion farthest minimum isolating cut, we design several simple and improved algorithms for Multiterminal Cut. We show that Edge Multiterminal Cut can be solved in O(2 l kT(n,m)) time and Vertex Multiterminal Cut can be solved in O(k l T(n,m)) time, where T(n,m)=O(min (n 2/3,m 1/2)m) is the running time of finding a minimum (s,t) cut in an unweighted graph. Furthermore, the running time bounds of our algorithms can be further reduced for small values of k: Edge 3-Terminal Cut can be solved in O(1.415 l T(n,m)) time, and Vertex {3,4,5,6}-Terminal Cuts can be solved in O(2.059 l T(n,m)), O(2.772 l T(n,m)), O(3.349 l T(n,m)) and O(3.857 l T(n,m)) time respectively. Our results on Multiterminal Cut can also be used to obtain faster algorithms for Multicut: O((min(?{2k},l)+1)2k2lT(n,m))O((\min(\sqrt{2k},l)+1)^{2k}2^{l}T(n,m)) -time algorithm for Edge Multicut and O((2k) k+l/2 T(n,m))-time algorithm for Vertex Multicut.  相似文献   

18.
We revisit the problem of indexing a string S[1..n] to support finding all substrings in S that match a given pattern P[1..m] with at most k errors. Previous solutions either require an index of size exponential in k or need Ω(m k ) time for searching. Motivated by the indexing of DNA, we investigate space efficient indexes that occupy only O(n) space. For k=1, we give an index to support matching in O(m+occ+log nlog log n) time. The previously best solution achieving this time complexity requires an index of O(nlog n) space. This new index can also be used to improve existing indexes for k≥2 errors. Among others, it can support 2-error matching in O(mlog nlog log n+occ) time, and k-error matching, for any k>2, in O(m k−1log nlog log n+occ) time.  相似文献   

19.
We show that the smallestk-gon circumscribing a convexn-gon can be computed inO(n 2 logn logk) time.  相似文献   

20.
Given a set S of m points stored on a reconfigurable mesh computer of size n×n, one point per processing element (PE). In this paper we present a parallel method for solving the k-Nearest Neighbor problem (k-NN). This method permits each point of S to know its k-NN (0<k<m). The corresponding algorithm requires that each PE must have 2k registers where it stores the (x,y) coordinates of its k-NN in a given order. This algorithm has a complexity of O(logh+k 2) times, where h is a maximal number of points within a row of the mesh. This complexity is reduced to O(k 2) times, using an appropriate procedure which demonstrates the power of the reconfiguration operations carried out by the processors, and the polymorphic properties of the mesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号