首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
某铁矿选矿试验研究   总被引:3,自引:0,他引:3  
针对某铁矿矿石主要为磁铁矿和赤铁矿,采用弱磁-强磁-反浮选的磁浮联合工艺流程,获得了弱磁精矿品位为66.07%,回收率为50.79%;强磁-反浮选精矿品位为61.37%,回收率为29.22%,总回收率为80.01%的试验指标。  相似文献   

2.
对于磁铁矿和赤铁矿混合型石英脉铁矿,磁浮工艺是成熟的.针对该矿嵌布粒度细,品位低的特点,利用粗精矿磨矿提高磁铁矿精矿品位和浮选入选品位,在原矿铁品位22%情况下,试验获得弱磁铁精矿品位大于65%,反浮选铁精矿品位大于58%,综合铁回收率大于50%.  相似文献   

3.
介绍了南芬红铁矿工艺矿物学特征和选矿试验研究情况,以及采用阶段磨矿—弱磁—强磁—阴离子反浮选工艺流程的扩大连选试验结果。连选试验获得品位65.84%,回收率91.13%的铁精矿,为红铁矿综合利用和选厂工业设计提供了可靠的依据。  相似文献   

4.
陈新林 《有色矿冶》2009,25(5):21-24
本试验矿石属鞍山式贫赤铁矿,且含硫较高。分别采用正浮选、重选、弱磁-强磁-反浮选的试验方案进行了回收赤铁矿的试验研究,弱磁-强磁-反浮选工艺取得了较好的试验效果,获得了铁品位67.81%、含硫0.019%、回收率65.68%的铁精矿。  相似文献   

5.
酒钢选矿厂排出的镜铁矿强磁选尾矿铁品位约为28%,有较高的回收价值。为回收其中的铁矿物,本研究基于该强磁选尾矿工艺矿物学,对其进行反浮选—磁化焙烧—磁选试验研究。研究结果表明:该强磁尾矿经过一粗一精的反浮选试验流程,可得到铁品位为43.88%的浮选精矿,其作业铁回收率为50.93%。经过磁化焙烧后得到焙砂,焙砂进行一粗一精的磁选试验后可得到铁品位为62.37%的磁选铁精矿,其作业铁回收率为83.39%。  相似文献   

6.
采用研制的新型阴离子反浮选捕收剂RFe-561对袁家村铁矿石磁选精矿、祁东三安公司铁矿进行了反浮选试验,试验结果表明:采用新药剂RFe-561,可获得品位为66.25%、回收率为96.45%的反浮选铁精矿,尾矿Fe平均品位7.46%。新药剂不仅选别指标优越,而且大大降低尾矿品位,提高了资源利用效率。  相似文献   

7.
穆晓辉 《甘肃冶金》2010,32(2):32-36
某选铜尾矿含铁、硫等有价元素,磁选法选铁时,铁精矿品位只有60%左右、含硫大于2%、含硅13.67%,为不合格产品。通过研究,制定了浮选脱硫-弱磁选铁-反浮选降硅的选别工艺,可得到铁品位66.82%、回收率82.73%的铁精矿和硫品位36.42%、回收率87.89%的硫精矿。  相似文献   

8.
回收尾矿中有用成分的实践探讨   总被引:5,自引:0,他引:5  
为了使矿产资源得到综合利用和实现效益的最大化,利用包钢选矿厂生产铁精矿后剩余的尾矿和脱溢,通过再磨,弱磁选,反浮选回收铁精矿和通过一次粗选、二次精选回收稀土精矿,从而得到品位为62.11%的铁精矿和品位为50.00%的稀土精矿.  相似文献   

9.
某钼、锌、铁复杂多金属矿的选矿工艺研究   总被引:3,自引:0,他引:3  
李崇德  陈金中 《铜业工程》2006,(1):15-18,10
针对某钼、锌、铁复杂多金属矿石中含有可浮性极好的滑石、蛇纹石等特点,采用选择性捕收剂优先反浮选影响钼浮选的脉石,然后选钼,再锌、硫混选;浮选尾矿弱磁选铁。采用该工艺,试验获得了钼品位45.54%、回收率82.29%的钼精矿和锌品位48.07%、回收率84.14%的锌精矿,以及铁品位65.20%、对原矿全铁回收率53.46%(对原矿磁铁矿回收率81.30%)的铁精矿,同时获得了硫品位为38.75%、回收率为60.42%的硫精矿,使钼、锌、铁、硫都得到了综合回收。  相似文献   

10.
巴基斯坦某铁矿中磁铁矿和赤铁矿的嵌布粒度细,通过磁选难以获得高品位铁精矿。为提高精矿品位,在对巴基斯坦某铁矿选矿工艺进行系统研究的基础上,确定"阶段磨矿-阶段选别"的工艺流程,全流程试验采用"两段磨矿,一段磁选抛尾,二段反浮选"方法提高精矿品位,获得了铁精矿品位为62.84%,铁回收率为70.04%的良好选矿指标。  相似文献   

11.
某铁矿为微细粒弱磁性铁矿,有用矿物主要是赤铁矿和磁铁矿,脉石矿物主要是石英.在磨矿中产生许多矿泥,影响其可浮性.采用重选、磁选、浮选、选择性絮凝和磁化焙烧等工艺处理该矿石.结果表明,采用选择性絮凝脱除矿泥,阳离子反浮选工艺最合适.在原矿含铁45.27%的情况下,获得铁品位59.67%,回收率78.84%的铁精矿.  相似文献   

12.
陕西某钒钛磁铁矿资源,TFe品位为15.85%,TiO2品位2.94%、V2O5品位0.14%,属尚难利用低品位钒钛资源。通过采用新型ZCLA选矿机进行粗粒湿式抛尾,再采用弱磁选回收钒钛磁铁矿,强磁选一重选工艺回收钛铁矿,最终实现该矿铁、钛、钒资源的综合利用,钒钛磁铁矿产率13.37%,品位可达到60.18%~65.27%,磁性铁回收率达到98%以上,钛铁矿产率1.94%,钛铁矿回收率84.09%以上,铁精矿含V2O5富集到0.89%~0.93%,改变了矿山只能回收铁资源的现状,开创了钒钛铁资源综合回收的新工艺。  相似文献   

13.
对某选铁尾矿中的白钨进行了综合回收试验研究。根据试料性质,采用了弱磁选-重选-强磁选、弱磁选-重选、弱磁选-重选-浮选等3种方案进行白钨选矿试验,最终确定弱磁选-重选-浮选工艺。试验结果为铁精矿品位Fe65.89%,回收率22.07%,钨精矿品位WO351.64%,回收率为10.94%的分选指标。  相似文献   

14.
甘肃某含钛磁铁矿含钛6.58%,含铁21.46%,具有较大的回收价值.在工艺条件试验研究的基础上,采用"弱磁选铁-强磁预富集-钛浮选"的工艺流程回收有价金属,最终,实验室小型闭路试验可获得含铁61.75%,全铁回收率43.45%(磁性铁回收率达86.47%)的铁精矿和含钛50.10%,钛回收率60.23%的钛精矿,浮选作业回收率为85.94%,选别指标较好.   相似文献   

15.
针对陕西某微细粒磁铁矿中部分磁铁矿与极微细脉状脉石矿物互层交互嵌布、含硫高、处理难度大的特点,在工艺矿物学研究的基础上提出了原矿粗碎磁滑轮抛尾—磁选抛尾—磁粗精矿再磨浮选脱硫—浮硫尾矿磁精选联合流程。全流程试验可获得铁品位65.15%、含硫0.11%、铁回收率73.10%的铁精矿,以及硫品位25.12%、硫回收率30.67%的硫精矿。  相似文献   

16.
赤褐铁矿磁化焙烧矿物组成和物相变化规律   总被引:2,自引:0,他引:2  
磁化焙烧—磁选工艺是有效处理难选弱磁性氧化铁矿的最有效方法之一,所得到的铁精矿性质与天然磁铁矿性质具有较大的差别。反浮选结果表明,人工磁铁矿和天然磁铁矿在浮选性能方面具有较大的差异,采用XRD(X-ray diffraction)、显微镜测试技术观察磁化焙烧矿物组成和物相变化,原矿中硅以碎屑石英和硅质泥岩形式存在,焙烧后有部分硅质泥岩,还有部分石英是被铁矿包裹,分布较原矿分散,即磁化焙烧形成的磁铁矿有一定的包裹、充填和浸染现象,具有不完整的晶体结构,分布分散,矿石内部组织结构的不均匀程度增加。原矿有用矿物主要以Fe2O3形式存在,脉石矿物主要是石英;焙烧后铁矿物的赋存由Fe2O3转变成Fe3O4为主,并掺杂Fe2O3,FeO,Fe,矿物组成发生变化,矿物不均匀性增强。焙烧物中还出现高铁橄榄石和铁硅酸盐峰,一部分橄榄石和硅酸盐矿物进入反浮选精矿,造成铁损失。  相似文献   

17.
本文针对甘肃省铅锌矿石铅品位较低,铅矿物种类多,嵌布粒度粗细不均等特点,研究采用顺序优先浮选的工艺流程,最终获得了铅精矿品位51.50%,回收率50.31%;锌精矿品位58.10%,锌回收率96.43%的较好选别指标。实现了对该矿山资源的综合回收利用。  相似文献   

18.
哈西亚图铁多金属矿床中共生的金矿规模已达中型,可大大提高该矿床的经济效益,对金矿综合回收利用方法的研究显得尤为重要。矿石工艺类型为中硫化物矽卡岩型金矿石,矿石自然类型属混合矿。矿石中主要金属矿物为磁铁矿、磁黄铁矿和黄铁矿,贵金属矿物为自然金和银金矿。通过试验研究,浮选工艺推荐“浮选金-尾矿磁选铁-铁精矿浮硫”方案,浸出工艺推荐“全泥氰化炭浸提金-尾渣磁选铁-铁精矿浮硫”方案。试验结果表明,采用全泥氰化炭浸-磁选铁(浮选除硫)工艺处理哈西亚图金矿石效果最佳。  相似文献   

19.
王红梅 《山东冶金》2004,26(5):51-53
内蒙古磁铁矿矿石性质较复杂,含铁36.22%,含硫1.197%,磁铁矿嵌布粒度细,有害元素硫不易脱除,研究确定了先浮后磁的选矿工艺流程。采用反浮选脱硫,并通过试验确定了磨矿粒度-0.074mm90%、异戊黄药用量150g/t、2#油用量60g/t、矿浆pH值为5.5、硫酸铜用量400g/t的最佳选矿条件,验证试验表明,铁精矿品位可达64.81%,铁回收率72.82%,铁精矿含硫仅为0.415%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号