共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
采用高频脉冲电流,制备Ni-Co复合镀层。通过正交试验设计的方法,重点考察了脉冲频率、占空比、平均电流密度、镀液pH值、温度及CoSO4·7H2O的浓度对镀层在15%H2SO4溶液中的阳极极化行为的影响,从而遴选出最佳电镀工艺:脉冲频率140kHz,占空比0.25,平均电流密度3A/dm,镀液pH值3,温度45℃,硫酸钴浓度20g/L。同时,对高频脉冲电镀与直流电镀进行比较。 相似文献
3.
碱性高速电镀耐蚀性锌铝合金工艺简介 总被引:3,自引:0,他引:3
介绍了碱性电镀锌铝合金工艺流程、镀层质量和镀液性能。镀液中Zn^2+浓度为25~35g/L,电流效率为80%,测极电流密度范围宽0.5~25.0A/dm^2,可实施不同镀速的电镀0.5~6.0μm/min。 相似文献
4.
硝酸钠在Zn—SiO2高速电镀中的作用 总被引:3,自引:0,他引:3
实验采用循环电镀装置及硫酸盐体系,在镀液PH值和温度、镀液流速和阴极电流密度保持一的条件下,研究硝酸钠对ZnSiO2复合电镀的作用。在我们的实验范围内,当镀液中硝酸钠浓度超过0.5g/L时,镀层SiO2含量随它的增加而上升,相应复合镀层的颜色由灰色逐渐变为黑灰色。在高速电镀条件下,NaNO3能提高SiO2共析度。 相似文献
5.
在10~30A/dm^2电流密度范围内对硫酸盐体系锌-镍合金电沉积的规律进行了研究,确定了准动态锌-镍合金电镀工艺。锌-镍合金电沉积是异常共沉积。[NiSO4·6H2O]/[NiSO4·6H2O+ZnSO4·7H2O]浓度比增加使镀层中镍含量增大;电流密度增加使镀层中镍含量下降。准动态锌-镍合金电镀工艺阴极电流效率为95%,电沉积速度为38g/m^2·min;镀得的镀层外观为青白色带有金属光泽的良 相似文献
6.
7.
镍—铁—磷非晶态合金电镀新工艺 总被引:1,自引:0,他引:1
报道了一种Ni-Fe-P非晶态合金电镀新工艺,讨论了镀层成分与工艺参数间的关系,解决了镀液因Fe^3+存在及PH值不稳定产生的问题,通过X射线衍和电子显微镜扫描检测结果表明在H3PO3体系中得到了含量在20%-60%,含磷量在8%-16%的Ni-Fe-P非晶态合金镀层。 相似文献
8.
9.
用电镀的方法制备出Ni-纳米TiO2复合电镀层,讨论了表面活性剂、阴极电流密度、搅拌速率等对复合镀层硬度的影响并分析了纳米TiO2的加入对复合镀层硬度、耐蚀性的影响情况.结果表明,与纯镍镀层相比,Ni-纳米TiO2复合电镀层的硬度可提高90~190 HV;添加阳离子表面活性剂分散纳米TiO2所得复合镀层硬度最高,说明阳离子表面活性剂有利于纳米TiO2-Ni复合电沉积.浸泡试验表明,在硝酸溶液中复合镀层的腐蚀速率高于纯镍镀层的腐蚀速率,但远低于未镀覆钢板的腐蚀速率;极化曲线表明,与纯镍镀层相比,复合镀层的自腐蚀电位没有显著提高.说明在复合镀层中添加纳米TiO2不能改善其耐蚀性. 相似文献
10.
常温高效硫酸盐三价铬电镀工艺 总被引:6,自引:2,他引:6
六价铬电镀工艺严重污染环境,有望被三价铬电镀取代.三价铬电镀分为氯化物体系和硫酸盐体系,其中硫酸盐体系因具有阳极无有害气体析出、不腐蚀设备等优点,近年来发展迅速.通过大量试验开发出常温甲酸-草酸体系硫酸盐工艺,并借助小槽挂镀、Tafel曲线、EIS曲线和CASS试验等方法对镀液和镀层性能进行了分析.结果表明,在优化工艺条件下,该工艺镀层沉积速率高达0.18μm/min以上,分散能力93%,覆盖能力96%,耐蚀性好,是一种性能优良、高效的三价铬电镀工艺. 相似文献
11.
Y. X. Zhao Q. Gao & J. N. Wang 《Fatigue & Fracture of Engineering Materials & Structures》2000,23(11):929-941
The density and size of short cracks on the surface of 1Cr18Ni9Ti stainless steel smooth specimens during low cycle fatigue are investigated using a replica technique. The density and size data are analysed from two different observation policies, i.e. Policy I pays attention to the whole specimen test piece and Policy II is related to an ‘effective short fatigue crack criterion’, which pays attention to the dominant crack (DC) initiation zone and the zones ahead of the DC tips. The results reveal that both the crack density and crack size evolution exhibit a specific character during the microstructural short crack (MSC) and physical short crack (PSC) stages. The Policy I‐based observations exhibit an increasing density and little scatter of the density data. The increasing density violates the general test observation of decreasing collective crack effects in the PSC stage. The little scatter is too small to reflect the intrinsic scatter of fatigue properties. Both the crack density and crack size evolution from this policy show little relationship with the intrinsic localization of fatigue damage. However, Policy II‐based observations show an increasing crack density and an increasing density scatter in the MSC stage. The density and scatter reach their maximum values at the transition point between the MSC and PSC stages. Then, they decrease with fatigue cycling in the PSC stage and tend to their saturation values when the DC size is above about 500 μm. This behaviour shows a good agreement with the general test observations of decreasing collective crack effects and growth rate scatter in the PSC stage. Further, both approaches exhibit an evolutionary positively skewed crack size distribution, and an increasing difference between the average crack length and the DC length in the PSC stage, indicative of decreasing collective crack effects. A three‐parameter Weibull distribution (3‐PWD) is appropriately used to describe the crack sizes and a 6.5 to 7.6 μm value of location parameter of the distribution is obtained to reflect a minimum value for the initial cracks. It is worth noting that Policy I‐based observations show an increasing positively skewed crack size distribution, an increasing scatter of the size data and a decreasing shape parameter of the 3‐PWD. This represents an increasing collective crack effect and an increasing irregularity of interactive cracks, which violates the general test observations. In contrast, Policy II‐based observations exhibit a decreasing positively skewed size distribution shape and an increasing (from <1 gradually to >1) shape parameter of the 3‐PWD that is in agreement with the general test observations. The increasing shape parameter indicates that the collective crack effects act as an evolutionary process from an initial non‐ordered (chaotic) random state gradually to an independent random state at the transition point between the MSC and PSC stages and then, to a loading history‐dependent random state. This behaviour is in accordance with the evolutionary DC growth behaviour. Therefore, the evolutionary short crack behaviour associated with the intrinsic localization of fatigue damage should be appropriately revealed from the ‘effective short fatigue crack criterion’‐based observations. 相似文献
12.
The paper is concerned with comparison of two crack propagation methods applied to a two-dimensional computational model of the surface initiated crack growth in the lubricated contact area of meshing gears. The virtual crack extension method and the minimum strain energy density criterion are used for simulation of the crack propagation in the framework of the finite element analysis. The discretised equivalent contact model, with the assumed size and orientation of the initial crack, is subjected to contact loading conditions, accounting for the elasto-hydro-dynamic lubrication effects, tangential loading due to sliding and the influence of lubricating fluid, driven into the crack by hydraulic mechanism. The computational results show that both crack propagation methods give comparable results, although the virtual crack extension method has some clear advantages due to its theoretical superiority in dealing with mixed-mode short crack propagation close to the loading boundary. 相似文献
13.
14.
15.
16.
This investigation was performed to compare the simulation and experimental results of the fatigue crack growth rates and behaviors of the 7050-T7451 aluminum alloy by nanoseconds laser shock processing (LSP). Forman–Newman–deKoning (FNK) model embedded in the Franc2D/L software was utilized to predict fatigue crack growth rate, which was conducted to weigh the stress intensity factor (SIF) changing on the surface cracks. LSP induced high compressive residual stresses that served to enhance fatigue properties by improving the resistance against fatigue crack initiation and propagation. The circulating times of crack growth obtained from the simulation and experimental values indicated a slower fatigue crack growth rates after LSP. The relationships between the elastic–plastic materials crack growth rates and the SIF changing after LSP are resolved. 相似文献
17.
Crack propagation during Stage I, in terms of crack initiation sites and growth directions and crack branching mechanisms under fretting conditions, is investigated using both experimental and theoretical approaches. Fretting tests were conducted on an aeronautical aluminium alloy. Two crack types are observed during Stage I corresponding, respectively, to specific mode I and II conditions. Transition from Stage I to Stage II is characterized for both crack types by a crack branching towards a new propagation direction of ≈65° to the specimen surface. Specific parameters linked to mode I and II propagation driving forces are proposed. Crack location and initial growth directions during Stage I are predicted in accordance with these parameters, and are in very good agreement with experimental observations. The conditions governing the transition from Stage I to Stage II are then identified. It is shown that under fretting conditions, cracks branch along a new direction, thereby maximizing the crack-opening amplitude. 相似文献
18.
为降低碳纳米管的表面活化能,改善碳纳米管与金属基体的相容性,采用化学镀的方法,在碳纳米管表面镀覆一层金属Ni.研究了施镀时间和镀液浓度对碳纳米管表面镀Ni层厚度的影响.结果表明:随着施镀时间延长,Ni沉积颗粒变大导致镀Ni层变厚;镀液浓度增加,碳纳米管表面沉积的Ni颗粒增多,镀Ni层逐渐致密.本实验工艺条件下,镀液浓度为0.08 mol/L,反应时间为30 min时,可以在碳纳米管表面镀覆一层界面结合良好且致密的Ni层,其厚度约为10nm.热处理能有效缓解镀Ni层应力,改善界面结合. 相似文献
19.
Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, some authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle were investigated. It was demonstrated that: (i) LEFM concepts are applicable to the problem under study; (ii) the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; (iii) the ΔKeff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; and (iv) the analysis of remote compliance is the best numerical parameter to quantify the crack opening level. Therefore the crack closure concept seems to be valid. Additionally, the curves of crack tip parameters against stress intensity factor range obtained without contact may be seen as master curves. 相似文献
20.
Depending on the nature of the working medium and working conditions, corrosive and cavitation damage shall arise to pump’s components. In industrial applications the corrosion-reducing coatings are sprayed on hydraulic components. But it is questionable whether such products actually do help under wear or cavitation loads or not. Abrasive jet wear tests were carried out to determine the wear resistance of coating materials: polymers and ceramics, cast iron, and steel of various types. The samples were loaded for five hours, and finally the wear depth was measured as a determining indicator of the sample’s wear resistance. Results of investigation on anti-erosion performance of epoxy resin, ceramic and Polyurethane (PU) coatings brushed on alloy steel surface were also presented. Cavitation erosion tests were performed on the ultrasonic rig. The mass loss and surface morphology of the specimens were examined by balance analysis and 3-D laser microscopy, respectively. The investigations showed excellent wear-resisting performance of ceramic coatings, which is better than wear-resistance of stainless steel, cast iron and high chrome alloy steel. But the excellent wear-resisting performance could not guarantee a good erosion-resisting performance. The ceramic coatings’ anti-erosion performances were inferior to that of gray cast iron, and hardly comparable to those of stainless steels. The basic factors that influenced coating’s cavitation erosion endurance were adhesion and thickness of coatings. Analysis of coating’s degradation mechanism showed that PU coatings could withstand longer incubation period thus enhancing the materials’ cavitation erosion resistance. Several practical cases were analyzed, showing some guidance for coatings’ application. 相似文献