首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase equilibria of the La2O3–SrO–CuO system have been determined at 950°C at 30 kbar (3 GPa). Stable phases at the apexes of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2, CuO4 and La2Cu2O5 in the LaO1.5–CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO–SrO binary. The La2– x Sr x -CuO4–δ solid solution is stable for 0.00 is ≤ x ≤ 1.29, the La2– x Sr1+ x Cu2O6+δ solid solution is stable for 0.03 ≤ x ≤0.20, the La2– x Sr x Cu2O5–δ solid solution is stable for 0.00 ≤ x ≤1.08, and the La x Sr14– x Cu24O41 solid solution is stable for 0.00 ≤ x ≤ 6.15. The 30 kbar phase diagram differs from the 1 atm (0.1 MPa) and 10 kbar (1 GPa) results principally in the absence of La1– x Sr2+ x Cu2O5.5+δ as a stable phase and the extended range of the La2– x Sr x Cu2O5–δ solid solution at 30 kbar.  相似文献   

2.
Crystal chemistry and subsolidus phase equilibrium studies of the Ba-Nd-Cu-O system near the CuO and Nd2O3 corners have been carried cut at 950°C in air. Two solid-solution series have been identified in the Ba-Nd-Cu-O system. The first series involves the high- T c superconductor phase, and has the formula Ba2–xNd1+xCu3O6+z, where × < ≅ 0.7. At the ideal compound stoichiometry of Ba2NdCu3O6+z, the transformation from the high- T c orthorhombic to tetragonal phase occurs at 550°–575°C in air. This temperature varies as a function of composition, and at x ≅ 0.2 to 0.3 it occurs at 950°C. The second solid solution is the non-superconducting "brown phase" represented by Ba2+2x-Nd4–2xCu2–xO10–2z 0 ≤ x ≤ 0.1. Preliminary phase diagrams of the BaO–Nd2O3 and Nd2O3–CuOx systems are also presented. Standard X-ray diffraction patterns of BaNd2–CuO5 and (Nd1.9Ca0.1)CuO4–z are provided.  相似文献   

3.
The NaZr2P3O12 (NZP) family of materials is attracting increasing attention due to its low-thermal-expansion behavior. The system Ba1+xZr4P6–2xSi2xO24 (0 ≤ x ≤ 1), belonging to the NZP family, shows ultralow thermal expansion over a wide temperature range. It also shows anisotropy in its lattice thermal expansion. This causes microcracking as the sintered specimens are cooled, which results in degradation of the mechanical properties. In this work, the chemical stability, strength, and Young's modulus of Ba1+xZr4P6–2xO24 ( X = 0.25 and 0.5) ceramics at high temperatures have been determined. An attempt has been made to correlate the mechanical properties to the thermal expansion anisotropy.  相似文献   

4.
Solid solutions of general compositions (Mg1- xFex)O and (Mg1-xCox)O (0.05 ≤ x ≤ 0.25) were investigated with regard to the dependence of their specific electrical conductivity on the oxygen partial pressure (10−17≤ po2≤ 105 Pa) at 900c and 800°C. The experimental results, especially the slopes of plots of log σ vs log po2 and the stability of the solid solutions studied, indicate that some of these compositions could be used as oxygen sensors at high temperatures.  相似文献   

5.
The extensive nonstoichiometry in the 〈U1– z Gd z O2± x 〉 † phase was investigated experimentally and the data are represented by a chemical thermodynamic method. The experimental ranges of temperature, oxygen potential, and z were 1273 to 1773 K, 0 to −600 kJ/mol, and 0.1 to 0.8, respectively. For hypostoichiometry, ideal-solution thermodynamics for the equilibrium 3Gd4/3O2+ 4UO2+ (O2) = 6U2/3Gd2/3O8/3 were used to represent the experimental data, while for hyperstoichiometry a nonideal solution was used for the equilibrium 4UO2+ (O2) = 2U2O5. The wide ranges in x and z led to an improvement of the previous analysis of literature data and led to partial molal Gibbs free energy values that are useful for any thermodynamic calculation involving the phase.  相似文献   

6.
Ceramic samples with the nominal composition (1− x ) BaTiO3+ x Ba3Ti2YO8.5 ( x =0−0.535) were prepared by the mixed oxide method. X-ray diffraction (XRD) analysis shows that the materials are of single phase with a cubic symmetry as x ≤0.16. The compositions of the solid solutions ( x ≤0.16) can be expressed equivalently as Ba(Ti1− y Y y )O3−δ ( y ≤0.122, y = x /(1+2 x )). For x >0.16, the materials are diphasic composites consisting of Ba(Ti1− y Y y )O3 ( y =0.122) and Ba3Ti2YO8.5. The microstructure observation by scanning electron microscopy supports the XRD result. The dielectric behavior and phase transitions of the solid solutions ( x ≤0.16) vary with different Y concentrations. The dielectric constant of the composites ( x >0.16) follows approximately the Lichteneker relation in a wide temperature range.  相似文献   

7.
Lead-free piezoelectric ceramics (Na1− x K x )(Nb1− y Sb y )O3+ z mol% MnO2 have been prepared by a conventional solid-state sintering technique. Our results reveal that Sb5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with a single-phase orthorhombic perovskite structure. The partial substitution of Sb5+ for B-site ion Nb5+ decreases the paraelectric cubic-ferroelectric tetragonal phase transition ( T c) and the ferroelectric tetragonal-ferroelectric orthorhombic phase transition ( T O–F), and retains strong ferroelectricity. A small amount of MnO2 is enough to improve the densification of the ceramics. The co-effects of MnO2 doping and Sb substitution lead to significant improvements in ferroelectric and piezoelectric properties. The ceramics with x =0.45–0.525, y =0.06–0.08, and z =0.5–1 exhibit excellent ferroelectric and piezoelectric properties: d 33=163–204 pC/N, k P=0.47–0.51, k t=0.46–0.52, ɛ=640–1053, tan δ=1.3–3.0%, P r=18.1–22.6 μC/cm2, E c=0.72–0.98 kV/mm, and T C=269°–314°C.  相似文献   

8.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

9.
Compounds in a CaO–Y2O3–SnO2 system were prepared by a solid-state reaction at 1673 K. The phase relation in this system was investigated by powder X-ray diffraction. Besides the previously reported ternary compounds, CaSnO3, Ca2SnO4, Y2Sn2O7, and a quaternary compound Ca0.4Y1.2Sn0.4O3, solid-solution series of Ca2− x Y2 x Sn1− x O4 with 0≤ x ≤0.5, and Ca1− y Y2 y Sn1− y O3 with 0≤ y ≤0.2 and 0.95≤ y ≤1.0 were found. The cell parameters of these solid-solution series were refined. The changes of rhombohedral cell parameters in the samples prepared in the range 0.565< y <0.714 of Ca1− y Y2 y Sn1− y O3 suggested the existence of solid solutions of Ca0.4Y1.2Sn0.4O3, although their single phases could not be prepared, except at y =0.6.  相似文献   

10.
K x Ba1− x Ga2− x Ge2+ x O8 (0.6≤ x ≤1) polycrystalline ceramics are potential materials for glass-free low-temperature cofired ceramics (LTCC) substrates. We have made a comprehensive study of the kinetics of the monoclinic-to-monoclinic P 21/ a ⇔ C 2/ m phase transition. The low-temperature-stable P 21/ a phase with a high Q × f value was synthesized using a subsolidus method and was well sintered at the LTCC temperature with a H3BO3 additive. A good combination of low sintering temperature (910°–920°C), high Q × f values (96 700–104 500 GHz), low permittivities (5.6–6.0), and a small temperature coefficient of resonant frequency (∼−20 ppm/°C) was obtained for ceramics with x =0.67 and 0.9 and with 0.1 wt% of H3BO3.  相似文献   

11.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

12.
The entire data base for the dependence of the nonstoichiometry, x , on temperature and chemical potential of oxygen (oxygen potential) in 〈U1– z Ce z O2+ x 〉 and 〈U1– z Ln z O2+ x 〉 was retrieved from the literature and represented by a thermodynamic method. The method reproduces the behavior of the experimental data and also results in partial molal Gibbs free energy quantities that are useful for any thermodynamic calculation involving these nonstoichiometric phases. The behavior of these systems is also compared with that for 〈U1– z Pu z O2± x 〉.  相似文献   

13.
Powder X-ray diffractometry (XRD) and 151Eu Mössbauer spectroscopy were performed for samples prepared in the temperature range 1500–1500°C for the hafnia–europia (HfO2–Eu2O3) system Eu x Hf1− x O2− x /2(0 ≤ x ≤ 1.0). The XRD results showed that two types of solid solution phases formed in the composition range 0.25 ≤ x ≤ 0.725: an ordered pyrochlore-type phase in the middle-composition range (0.45 < x < 0.575) and a disordered fluorite-type phase, enveloping the pyrochlore-type phase on both sides, in the composition ranges 0.25 ≤ x ≤ 0.40 and 0.60 ≤ x ≤ 0.725. 151Eu Mössbauer spectroscopy sensitively probes local environmental changes around trivalent europium (Eu3+) caused by the formation of these solid solution phases. In addition to the broad, single Mössbauer spectra observed in this study for the Eu3+, the values of isomer shift (IS) exhibited a pronounced minimum in the neighborhood of the stoichiometric pyrochlore phase ( x ≈ 0.5). Such IS behavior of Eu3+ was interpreted based on the XRD crystallographic information that the ordered pyrochlore phase has a longer (in fact, the longest) average Eu–O bond length than those of the disordered fluorite phases on both sides or the monoclinic (and C-type) Eu2O3at x = 1.0.  相似文献   

14.
We have investigated the ZrO2–AITaO4 system to understand how selected chemical substitutions can be used to control cation-ordering transformations in zirconium titanate based dielectric ceramics. The complete replacement of the Ti content of Zr x Ti2–xO4 by a coupled Al3+/Ta5+ substitution permits the synthesis of a wide range of isostructural Zr x (Al0.5Ta0.5)2–xO4 solid solutions. At high temperatures a disordered α-PbO2 type of structure is formed for 0.375 ≤ x ≤ 1.03. Samples with 0.67 ≤ x ≤ 1.03 undergo a cation-ordering reaction to a structure in which the a and b axes of the parent disordered Cell are doubled. The stabilities of these cation-ordered derivative structures are significantly greater than those of the ordered zirconium titanates. The ordering temperatures are composition dependent with a maximum of 1393°C occurring for Zr0.86(Al0.5TaO0.5)1.14O4. The higher transition temperatures also enhance the kinetics of the ordering transition; whereas the pure zirconium titanates require extended annealing to produce complete cation order, fully ordered Zrχ(Al0.5Ta0.5)2–χO4 solid solutions are produced during a normal furnace cool.  相似文献   

15.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

16.
BaTi1−2 y Ga y Nb y O3 (BTGN) (0≤ y ≤0.35) powders were synthesized at 1300°C by the conventional solid-state method. Room temperature x-ray diffraction patterns for y ≤0.025 and 0.05≤ y ≤0.30 can be indexed as the tetragonal ( P 4 mm ) and cubic ( Pm     m ) polymorphs of BaTiO3, respectively, whereas y =0.35 consists of a mixture of the cubic polymorph of BaTiO3 and an 8H hexagonal-type perovskite ( P 63/ mcm ) isostructural with Ba8Ti3Nb4O24. Scanning electron microscopy shows the microstructures of BTGN ceramics ( y ≤0.30) sintered at 1500°C to consist of fine grains (1–3 μm) within a narrow grain size and shape distribution. Room temperature transmission electron microscopy for y ≤0.08 reveals core–shell structures and (111) twins in some grains; however, their relative volume decreases with y . Energy dispersive spectroscopy reveals the cores to be Ga and Nb deficient with respect to y . For y >0.08 there is no evidence of core–shell structures, however, some grains have a high density of dislocations, consistent with chemical inhomogeneity. BTGN ceramics exhibit a diverse range of dielectric behavior in the temperature range 120–450 K and can be subdivided into two groups. 0.025≤ y ≤0.15 display modest ferroelectric relaxor-type behavior, with high room temperature permittivity, ɛ25', (>300 at 10 kHz), whereas 0.25≤ y ≤0.30 are temperature and frequency stable dielectrics with ɛ25'<100 that resonate at microwave frequencies with modest quality factors, Q × f , ∼3720 GHz (at ∼5 GHz) for y =0.30.  相似文献   

17.
An alkoxide-hydroxide route has been developed to prepare Li4 + x Al4 − 3 x Si2 x O8 (0 ≤ x ≤ 0.25) powders by taking into account fundamental aspects of the sol-gel process. This technique allows one to prepare powders which exhibit the β-LiAlO2 type of structure after drying at 150°C. The β→γ-LiAlO2 topotactic transformation spreads over a large temperature range (746–839°C for x = 0.125) with no significant dilatometric and enthalpic change. Stoichiometric γ-LiAlO2-based ceramics with a large variety of uniform microstructures are fabricated by a direct sintering of β-LiAlO2 powders in the temperature range of 900–1100°C.  相似文献   

18.
Microwave dielectric properties and far-infrared reflectivity spectra of the 0.3CaTiO3–0.7Li(1/2)−3 x Sm(1/2)+ x TiO3 ceramics were investigated as a function of Sm3+ substitution (0.0 ≤ x ≤ 0.12). The dielectric constant decreased as the Sm3+ substitution increased. The Q × f value increased, up to a solid-solution limit at x = 0.11, because of the change of vibration modes between the A-site cation and the TiO6 octahedron, and then decreased because of the formation of a secondary phase (Sm2Ti2O7). On the analysis of the far-infrared reflectivity spectra, in the 50–4000 cm−1 range, the change of the dielectric loss and dielectric constant could be explained by the intrinsic factor.  相似文献   

19.
The crystal structures for a suite of substituted pollucites with the compositions CsTi x Al1– x Si2O6+0.5 x , 0 ≤ x ≤ 1, have been determined from Rietveld analysis of powder synchrotron XRD data. Our results indicate that the pollucite end member (CsAlSi2O6) has a tetragonal structure (space group I 41/ a ), whereas all other compositions are cubic (space group Ia 3 d ). The increased symmetry for the titanium-substituted structures is presumably due to the incorporation of additional O2− anions (needed for compensating the charge imbalance between Ti4+ and Al3+), which effectively holds open the expanded cubic framework. In situ cooling experiments of the substituted phase CsTi0.1Al0.9Si2O6.05 reveal a displacive transformation to the tetragonal structure at ∼230 K. This transformation is tricritical in nature and is analogous to the tetragonal-to-cubic transition in pollucite on heating.  相似文献   

20.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号