首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Abstract

The requirements for drying and thermobonding equipment working on the basis of the hot air flow-through system vary considerably due to the large variety of nonwovens qualities, production methods and required production speeds. It is therefore necessary to construct diverse drying systems in order to be able to offer appropriate machines for the desired purposes. Optimum heat and mass transfer from the penetrating air to the permeable material to be dried is ensured by through-air drying

Following Hans Fleissner's invention of the through-air system for drying of textiles and its practical application in the perforated drum dryer for more than 50 years a second engineering breakthrough for the paper and nonwovens industry has been achieved by Gerold Fleissner with the high-tech through-air drum

This paper presents various possibilities of air flow through the material and provide criteria to facilitate selection of the proper drying system  相似文献   

2.
In malt production drying operation plays an important role in the total processing cost, however there are not many studies on malt drying modeling and optimization.

In this paper a deep layer malt drying mathematical model in the form of four partial differential equations is presented.

To determine drying constants, malt thin layer drying experiments at several air temperatures and relative humidities were made.

The model were validated at industrial scale. The greatest energy savings, approximately 5 5% in fuel and 7.5% in electric energy, were obtained by an additional (and increased) air recirculation, which is carried out during the last 6 hours of the drying process and a significant decrease of air flow-rate during the last 6 hours of the drying process.  相似文献   

3.
Food Drying and Dewatering   总被引:3,自引:0,他引:3  
Food drying and dewatering raises a growing interest because of increasing requirements in quality, specially in the production of ingredients and additives for food formulation. Heat and mass transfers, as well as mechanical phenomena and reactions kinetics induced by these transfers must be more and more carefully controlled during drying and storage.

This chapter relates recent advances in

- drying of solids

- spray-drying

- drum-dryine

- superheateded steam drying

- osmotice dehydration

- hot oil immersion drying  相似文献   

4.
5.
In this paper a numerical simulation of a spray dryer using the computational fluid dynamics (CFD) code Fluent is described. This simulation is based on a discrete droplet model and solve the partial differential equations of momentum, heat and mass conservation for both gas and dispersed phase.

The model is used to simulate the behaviour of a pilot scale spray dryer operated with two drying media : superheated steam and air Considering that there is no risk of powder ignition in superheated steam, we choosed a rather high inlet temperature (973 K). For the simulation, drop size spectrum is represented by 6 discrete droplets diameters, fitting to an experimental droplets size distribution and all droplets are injected at the same velocity, equal to the calculated velocity of the liquid sheet at the nozzle orifice.

It is showed that the model can evaluate the most important features of a spray dryer : temperature distribution inside the chamber, velocity of gas, droplets trajectories as well as deposits on the walls. The model predicts a fast down flowing core jet surrounded by a large recirculation zone. Using superheated steam or air as a drying medium shows only slight differences in flow patterns. Except for the recirculation which is tighter in steam.

The general behaviour of droplets in air or steam are quite the same : smallest droplets are entrained by the central core and largest ones are taken into the recirculation zone. In superheated steam, the droplets penetrate to a greater extent in the recirculation zone. Also, they evaporate faster. The contours of gas temperature reflect these differences as these two aspects are strongly coupled. In both air and steam there is a “cool” zone which is narrower in steam than in air. Finally, the panicle deposit problem seems to be more pronounced in air than in steam.

Adding to the inherent interest in using superheated steam as a drying medium, the model predicts attractive behaviour for spray drying with superheated steam. In particular. under the conditions tested with the model, a higher volumetric drying rate is obtained in superheated steam.  相似文献   

6.
The main aim of the study presented in this article was to develop and test a method to determine spray-drying kinetics in a laboratory scale. A special measuring tunnel to obtain evaporation rate similar to the conditions observed in a spray-drying column was designed, built and tested.

Extensive studies of drying kinetics for maltodextrin were performed for different air flow rates and air temperatures. Test runs to determine repeatability of this technique showed satisfactory agreement between subsequent measurements, which confirms accuracy of the developed measuring method.

An effect of the initial moisture content on the critical moisture content was observed which is related to a decrease of the equilibrium vapor pressure over the solution and a decrease of the driving force of evaporation and drying rate of the process.

Results of the experiments proved that the generalized drying curve obtained from small-scale experiments could be used to describe spray-drying kinetics if the critical moisture content of the material is known.  相似文献   

7.
This paper explores the influence of temperature and pressure on drying kinetics of 2-(3-benzoylphenil propionic acid) ketoprofen, in a vacuum dryer on laboratory scale, Experimentally determined relations between moisture content and drying rate vs time, were approximated with an exponential model. Model parameters were correlated with drying conditions (temperature, pressure) and defined by functions of their potentions.

From an energy balance of the process, a mathematical model for simulating dependence of sample temperature vs drying time, and moisture content of material, has been developed.

Simulation of the drying kinetics and sample temperature, by use of those functional dependencies shows good agreement with experimental results.  相似文献   

8.
The scale-up of contact dryers is still based on experimental drying curves. In order to keep the effort to a minimum the drying curve is determined using a small laboratory or pilot dryer of similar geometry to the production dryer.

This paper introduces a new scale -up method for contact dryers. The new scale-up method is based on the assumption that heat transfer is the controlling mechanism. The scale-up method is derived from the material balance, the energy balance, the kinetic equation of heat transfer and thermodynamic equilibrium. The scale up method can be used to convert the drying time required to achieve a certain residual moisture content from the laboratory or pilot dryer to the production dryer and/or different drying conditions.

The scale-up method was verified by drying test with four different products in conical mixer dryers of 1, 60, 250, 1000 I volume. Two products were free flowing and two products were non free flowing in the wet state. The products can be considered non-hygroscopic in the moisture range investigated.  相似文献   

9.
In coating and gravure printing, an impinging jet nozzle with high thermal efficiency for drying of coated film was developed.

Trial production 0f 40 kinds of nozzle enables to develop a high-performance impinging jet nozzle with heat transfer coefficient 1.5 times larger than that of current slit nozzle, through measurement of heat transfer coefficient, visualizations of air flow and heat transfer, and measuremenu of jet velocity and turbulence distribution. The purpose of the trial production was to expand a range of high heat transfer and promote turbulence compared with the current nozzle.

Paying attention to mass transfer within gravure ink coated film, drying characteristic of the film was analyzed by numerical solution of a set of equations governing the drying process in which concentration dependencies 0f the diffusion coefficient and the equilibrium vapor pressure were considered.

Applying these analyses. an industrial scale dryer with excellent drying efficiency has finally been developed.  相似文献   

10.
Drying of red pepper under solar radiation was investigated, and a simple model related to water evaporation was developed. Drying experiments at constant laboratory conditions were undertaken where solar radiation was simulated by a 1000 W lamp.

In this first part of the work, water evaporation under radiation is studied and laboratory experiments are presented with two objectives: to verify Penman's model of evaporation under radiation, and to validate the laboratory experiments. Modifying Penman's model of evaporation by introducing two drying conductances as a function of water content, allows the development of a drying model under Eolar radiation.

In the second part of this paper, the model is validated by applying it to red pepper open air solar drying experiments.  相似文献   

11.
A natural solar drying system has been tested with wheat. Simple solar collectors give the small temperature rise needed for low temperature drying. The system, with a capacity of 35 tomes, is placed in a region of humid hot-temperate climate. It has been designed to dry all the locally produced grain (wheat, corn, soybean, sunflower, sorghum, etc.), without a supplemental heat source.

Two different types of solar collectors of the same effective area were tested, with one a storage-collector and the other a bare plate collector

Data from four field tests performed between 1981 and 1983 are given and discussed. The mean mass of water removed from the wheat per hour was of 6.54 kg, under an average air flow of 4.3 m3 /min. tonne  相似文献   

12.
The conventional drying of the coated film with organic solvent on continuous sheet materials is usually performed in open or one pass drying system using air as the drying medium. The concentration of evaporated organic solvent in the drying system must be low enough to prevent explosion and large volume of off gas from dryer to solvent recovery system is required, resulting in poor heat economy for all the plant

To improve the heat economy of the plant it had been proposed to use a closed cycle drying system, where an inert gas, e.g. nitrogen, is used as the drying medium. High concentration of the organic solvent in the recycle gas mixture may then be used, which results in smaller volume of recycle gas and possibility of applying an inexpensive solvent recovery system of dehumidification. This investigation includes two important problems to realize the closed cycle drying

(1)Measurement of solvent (toluene) evaporation rate from coated film in the gas mixture of toluene andnitrogen over a wide range of toluene/nitrogen ratios (0-1.0) and drying temperature using bench scaleapparatus

(2)Development of a contactless sealing method, using an inert gas, for closed cycle drying of continuoussheet materials. The results of preliminary tests demonstrate its feasibility.  相似文献   

13.
Pine sapwood was dried in an air convection kiln at temperatures between 60-80 °C. Temperature and weight measurements were used to calculate the position of the evaporation front beneath the surface. It was assumed that the drying during a first regime is controlled by the heat transfer to the evaporation front until irreducible saturation occurs. Comparisons were made with CT-scanned density pictures of the dry shell formation during initial stages of drying of boards.

The results indicate a receding evaporation front behaviour for sapwood above approximately 40-50% MC when the moisture flux is heat transfer controlled. After that we finally reach a period where bound water diffusion is assumed to control the drying rate.

The heat transfer from the circulating air to the evaporation front controls the migration flux. In many industrial kilns the heating coils therefore have too small heat transfer rates for batches of thin boards and boards with high sapwood content.  相似文献   

14.
This paper presents the application of a design method for a partial solar heating system of polyvalent modular dryers called “GJ-ABAQUE” to the drying of thick layers of grains.

This method is based on the use of charts or polynomial correlations. In the actual case where the drying air is not recycled, we only need one chart which allows one to determine the fraction of the monthly heating load supply by solar energy as a function of two dimensionless parameters. The latter implies the use of monthly average radiation data, the collector surface and estimates of drying loads.

The “GJ-ABAQUE” method was applied for drying 777 kg of corn, corresponding to 1 m3 of fresh product, in a thick layer in each modular dryer.  相似文献   

15.
Drying subbituminous coal has never been practiced commercially. The commercial dryers built to date have been designed for drying surface moisture in conjunction with upstream coal preparation facilities. This type of drying is mainly controlled by input energy and the basis of the design is an energy balance. In drying inherent moisture from subbituminous coal, the thermal conductivity of the coal and the diffusion of molecular water within coal particles impose limitations on the process conditions. Energy input and solids residence time in the dryer have to be controlled properly for simultaneously balancing the heat and mass transfer within the coal particles. Improper control of either parameter can cause fires and explosions during the key steps of the drying process—drying and cooling

In parallel to the Anaconda coal drying pilot plant program, a cross-flow, fluid-bed coal drying/cooling process simulator was developed for: (1) understanding the drying phenomena on an individual particle basis; (2) analyzing potential risks and safety limits, and (3) designing the Anaconda pilot plant program

The development of the process simulator was based on both first principles and laboratory data and can be divided into two phases:

1 Development of a semi-mechanistic drying model for Powder River Basin subbituminous coal employing an analytical solution of the diffusion equation

2.Formulation of a fluid-bed cross-bed cross-flow dryer/cooler simulator employing simultaneous heat and mass transfer

This model was validated against process variables data taken on a 4 tph pilot plant. An operable range, or process envelope, has been developed through the pilot plant experience and the process simulation study. Based on the model predictions, an uncertainly range was defined in the design recommendations of a pioneer coal drying plant in scale-up.  相似文献   

16.
Mass losses and low quality are the most serious disadvantages of traditional grape drying methods. For the production of high quality raisins an increase in the drying rate is required and the grapes should be protected from rain, dust and insects during drying.

Under the terms of a joint German-Greek research program low-cost solar grape dryers were developed in the Institute of Agricultural Engineering of Hohenheim University and were tested in Greece in cooperation with the Crete Agricultural Research Center.

The required data basis for optimizing solar grape dryers was obtained by additional laboratory tests measuring the influence of various drying parameters on drying rate and quality.

Tests with the solar dryers have shown that it is possible to reduce the drying time and improve the quality significantly compared to the traditional drying methods. Also mass losses due to rain can be prevented.  相似文献   

17.
The objectives of this work are to analyze the drying performance of conical-cylindrical spouted bed (CSB) dryers for three different grains (rice, corn and wheat), and to compare the drying efficiency of CSB dryers with that of spout-fluid bed (SFB) dryers. A PC-program was developed for: (I) -optimization of the CSB dryer dimensions; (2) -simulation of drying grains in the optimized CSB dryer (including start-up period); and, (3) -analysis of the drying performance in a similar SFB dryer.

The liquid diffusion model is used to describe the falling rate drying period. Semi-empirical correlations available in the literature as well as information obtained in the authors' laboratory for spouted and spout-fluidized beds of grains are used to describe the aerodynamic parameters.

The results are presented in terms of the size of the dryer, energy consumption, air handling requirement, drying characteristics etc for different drying conditions. The drying effeciency in a CSB is compared with that in a similar SFB for different grain feed rates and drying temperatures.  相似文献   

18.
In part one, a simple drying model of red pepper related to water evaporation was developed. In this second part the drying model is applied by means of related experiments.

Both laboratory and open air drying experiments were carried out to validate the model and simulation results are presented.  相似文献   

19.
An analytical model for the process is developed. The thermal diffusivity of the drying slabs is assumed infinite and the moisture diffusivity constant during the entire drying process.

With specified initial and boundary conditions, the mathematical model yields a two-part solution for the diffusion equation. The first part is valid for the initial drying during which the surface moisture content exceeds the value of fiber saturation. This part of the solution is used until the surface moisture content drops to the fiber saturation value. The moisture profile at the end of this period is used as the initial condition for the second period of drying which takes place under hygroscopic conditions.

Two simplifying assumptions are adapted for the hygroscopic region: 1. The dependence between the surface temperature and the moisture content is linear. 2. Constant (average) absorption heat is used during this second drying period.

For both parts of the solution, the surface moisture gradient is proportional to the local temperature difference between the drying air and the slab surface. This temperature difference can be expressed by means of a water mass balance equation for the part of the dryer between the slab in-feed and the point considered and by using the thermodynamic properties of the humid air.  相似文献   

20.
A key ingredient in granular synthetic detergents is Sodium Tripolyphosphate (STP). The hexahydrate of STP is unstable during the spray drying process. The decomposition (reversion) is shown to be solely a function of particle temperature. The reversion products interact with calcium ions in the wash water and form insoluble species. This results in undesirable deposition onto the fabrics. The goal of this study is to develop a drying process with lower temperatures to reduce the decomposition. This, in turn, will improve product quality by reducing undesirable fabric deposits.

A two stage drying process is used to reduce the drying temperatures. Experimental evidence is presented to demonstrate the near-elimination of STP decomposition.

The design of a production scale fluid bed dryer uses a ‘normalization'procedure to calculate the rate constants at constant bed temperature from the data taken at constant inlet air temperature. The rate constants are corrleated to bed temperature using an Arrhenius-like equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号