首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BaTiO3 (BTO) and BaTi0.8Zr0.2O3 (BZT) powders were prepared using the hydrothermal method, starting from BaO, TiO2 and Zr(NO3)2, 7H2O. X-ray diffraction analysis showed that the cubic phase is stable at room-temperature and the pure perovskite phase is obtained after heating the powders for 2 h at 1280 °C. The temperature dependence of the dielectric constant points to ferroelectric behavior. This ferroelectric behavior can likely be due to the presence of a possible quadraticity gradient in the grains since the cubic phase may not be ferroelectric. The diffuse character of the transition is attributed to this quadraticity gradient, to grain size distribution and (for BZT) to spatial fluctuations in the concentrations of the substituted ion (Zr) leading to the coexistence of regions of different Curie temperatures.  相似文献   

2.
Lithium ion conductors, Li3−2x(Sc1−xZrx)2(PO4)3 (0 x 0.3), were prepared by a solid-state reaction. TG–DTA analysis indicated no phase transition in the samples with x superior to 0.05. X-ray powder diffraction analysis of these samples clearly showed the stabilization of a superionic conduction phase at room temperature with an orthorhombic system Pbcn. The highest conductivity was observed for the sample with x=0.05, and ascribed to the stabilization of the superionic conduction phase and the introduction of vacancies on the Li+ sites by substituting Zr4+ for Sc3.  相似文献   

3.
We have studied influence of the Pt–Ni substitution on the crystal structure and magnetic behavior of the PrNixPt1−x compounds. Polycrystalline samples with x = 1, 0.9, 0.75, 0 were prepared and characterized by X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The analysis of XRPD data confirmed that the orthorhombic CrB-type structure owned by the parent binary compounds remains conserved through the entire series. The samples were subsequently investigated by specific heat (Cp), magnetization (M) and ac susceptibility measurements in the temperature range 2–350 K and in magnetic fields up to 9 T. All compounds were found to order ferromagnetically. The TC values monotonously increase with increasing Ni content. To inspect the crystal-field (CEF) effects and magnetocaloric properties specific-heat data were analyzed in detail and the magnetic contribution to the specific heat together with the magnetic entropy have been determined. The results of first principles electronic structure calculations of the PrNi and PrPt confirmed that besides the stable Pr magnetic moments due to localized 4f-electrons only a very small magnetic moments of at most 0.2μB is induced at the Ni (Pt) site due to the polarized 3d-electron states (5d-electron states) hybridizing with the Pr 5d-electron states, i.e. the Ni (Pt) moment plays only minor role in the total balance of the magnetic moments in these compounds.  相似文献   

4.
A series of LaxCeyO1 − x − y films (x = 0–0.54, y = 0–0.58) with thickness of 35–45 nm was deposited by unbalanced magnetron sputtering. High-resolution transmission electron microscope observation shows that La0.24Ce0.34O0.42 film has polycrystalline structure. La2O3 and CeO2 are formed within the LaxCeyO1 − x − y films confirmed by the X-ray diffraction and X-ray photoelectron microscopy. The friction coefficient and residual compressive stress of five kinds of three-element compound films exhibit symmetric distribution with the relative equilibrium of La and Ce atomic concentration within the films. The critical load of all deposited films is between 28 and 33 mN. The friction coefficient of two kinds of rare earth complex oxide films is in the range of 0.08–0.09, which is lower than that of only one kind of rare earth oxide films, and the friction mechanism is discussed.  相似文献   

5.
The La1−xKxCo1−xNbxO3 system was performed by conventional solid state reaction technique using metal oxides. By DSC analysis, the activation energy of crystallization of the powders with x = 0.3 is 388.4 kJ/mol. The crystal structure of the compound reveals a transition from rhombohedral to cubic, and then to orthorhombic structure as the amount of the potassium niobate (KNbO3) increases. It is found that the structure of the samples with x < 0.3 is similar to that of lanthanum cobaltate (LaCoO3), while at the compositions with 0.7 ≥ x ≥ 0.3, the structure transforms to cubic. Finally, with x ≥ 0.7, the structures were similar to that of KNbO3. According to the results of selected-area-diffraction (SAD) patterns and X-ray diffraction (XRD) identifications, the lattice parameters were calculated. The direction of superlattice structure along [2 1 0] was found for x = 0.5 as identified from SAD patterns. The dielectric constants were measured with cubic structure. Dielectric constant (K) decreases with increasing x.  相似文献   

6.
The structure and magnetic properties of CeMn2−xCoxGe2 (0.0≤x≤1.0) were studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in the ThCr2Si2-type structure with space group I4/mmm. Substitution of Co for Mn leads to a linear decrease in the lattice constants and the unit cell volume. Increasing substitution of Co for Mn shows a depression of ferromagnetic ordering.  相似文献   

7.
X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu2Cd1−zMnzSnSe4 and Cu2Cd1−zFezSnSe4 alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu2Cd0.8Fe0.2SnSe4 as well as for Cu2Cd0.2Fe0.8SnSe4 the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter σ decreases as Cd is replaced by either Mn and/or Fe. For the Cu2Cd1−zMnzSnSe4 and Cu2Cd1−zFezSnSe4 alloy systems, only two single solid phase fields, the tetragonal stannite α and the wurtz–stannite δ (Pmn21) structures were found to occur in the diagram. In addition to the tetragonal stannite α phase extra X-ray diffraction lines due to MnSe and/or FeSe2 were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.  相似文献   

8.
The citrate method was used to synthesize Sr(Ce1−xZrx)0.95Yb0.05O3−δ (x = 0.1, 0.2, 0.3, 0.4) and to avoid the drawbacks of the conventional solid state reaction method. The products were characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe X-ray microanalyzer (EPMA). The results indicate that the citrate method is an advantageous route in producing Sr(Ce1−xZrx)0.95Yb0.05O3−δ materials. Sr(Ce0.9Zr0.1)0.95Yb0.05O3−δ powders are composed of nanoscaled crystallites with the average grain size in the range of 60–70 nm. Single phase is confirmed over the whole x range. In addition, chemical stability against CO2 and electrical conduction behavior of the sintered Sr(Ce1−xZrx)0.95Yb0.05O3−δ ceramics were investigated. The chemical stability of the ceramics against CO2 is certified to increase with the increase in zirconium content. Impedance spectroscopy was used to study the electrical conduction behavior of Sr(Ce0.9Zr0.1)0.95Yb0.05O3−δ ceramic.  相似文献   

9.
Studies on the structure and the crystallographic site of Mn in LaCo13−xMnx compounds were carried out by using X-ray diffraction and X-ray absorption fine structure (XAFS) of the Mn K-edge. These compounds with x≤3.0 adopt a NaZn13-type structure consisting of icosahedral clusters. The lattice constant increases with the Mn concentration. The calculated XAFS curves of the center and the corner sites in the icosahedral clusters for the Mn K-edge are obtained by using the program . The fitting result for the corner site agrees much better with the observed XAFS spectrum than that for the center site. Therefore, the Mn site is determined to be the corner Co site in the icosahedral clusters of all the compounds. In comparison with the crystallographic parameters of LaCo13, the icosahedral clusters composed of Mn atoms expand and the crystallographic Mn site is slightly more close to the La atom.  相似文献   

10.
Structure and magnetic and electrical properties of the polycrystalline compounds LaMn1−xRhxO3 (0 < x ≤ 1) have been investigated. The samples were characterized by X-ray diffraction and Rietveld refinement which confirmed the space group Pnma (No. 62) for all compositions at room temperature. A transformation from O′- to O-type orthorhombic structure is seen near x = 0.6 tending to make the phase unstable. The electrical conductivity measurement shows semiconducting property above room temperature with a rather low activation energy for Mn-rich compositions. Compounds in the region 0.1 ≤ x ≤ 0.9 show ferromagnetic property but the substitution of Rh3+ ion for Mn3+ ion suppresses the ferromagnetism that results in reducing the Curie temperature, TC.  相似文献   

11.
The mechanical properties are not yet understood at basic levels. Previous works shows that the greatest hardness for rock-salt structures (such as TiCxN1−x) is attained for a valence electron concentration (VEC) of 4.2 electrons per atom. The present work is aimed to explore this concept for yttrium-based compounds. By means of first principles calculations we did a systematical investigation where nitrogen in YN (VEC = 4) was supplanted by either of B, C or O to reduce or increase its VEC, forming YBxN1−x, YCxN1−x and YN1−xOx ternary compounds. We have calculated the cohesive energy (EO), cell volume (VO), bulk modulus (BO) and density of states (DoS) as a function of VEC. The Fermi level (Ef,) is shifted toward the valence band by substituting B or C in YN, and toward the conduction band by means of O. It is concluded that the optimal position for Ef (maximum BO) is linked to the saturation of electronic states with eg-symmetry. At this point the excess of electrons provided by O starts filling antibonding states with t2g-symmetry. That is, BO increases monotonically as a function of VEC until VEC  4.1, after that point BO decrease.  相似文献   

12.
This paper reports the results of the electrical conductivity measurements for KCaH3−xFx series with (x = 1, 1.5, 2, 2.5) in the temperature range 298–503 K.The activation energy of the electrical conductivity for the studied compounds depends on hydrogen amount and Reau's criteria. Differential thermal analysis curves were measured in the same temperature range 298–503 K.Possible correspondence between preferential order given by X-ray diffraction, thermal behaviour and electrical properties are discussed.  相似文献   

13.
The TiCr2−xVx compounds with 0.0≤x≤1.2 series have been synthesised and characterised by X-ray powder diffraction. X-Ray qualitative and quantitative phase analysis has been carried out on the as-cast alloys using the Rietveld method. The refinements of the structure shows that the materials crystallise either in the hexagonal or in the cubic Laves phase type for low V contents. For x>0.6, the system is found of b.c.c.-type structure only. The pressure–composition–temperature (PCT) isotherms measured at 298 K show that the as-cast alloys absorb large amounts of hydrogen, from 4 to 5.2 H/f.u. The PCT diagrams reveal also the presence of a relatively flat plateau, and a large hysterisis effect, and correspondingly the hydride cannot be completely dehydrogenated.  相似文献   

14.
The structure and magnetic properties of Ce3−xGdxCo11B4 borides have been studied by X-ray powder diffraction (XRPD), magnetization and differential scanning calorimetry (DSC) measurements. X-ray analysis reveals that the compounds crystallize in the hexagonal Ce3Co11B4-type structure with P6/mmm space group. The substitution of Gd for Ce leads to an increase of the unit-cell parameter a and the unit-cell volume V, while the unit-cell parameter c decreases linearly. Magnetic measurements indicate that all samples are ordered magnetically below the Curie temperature. The Curie temperatures increase as Ce is substituted by Gd. The saturation magnetization at 4 K decreases upon the Gd substitution up to x = 1, and then increases.  相似文献   

15.
The effects of the combined substitution of Y and Ga on the crystallographic structure of Nd2−xYxFe17−yGay compounds with x = 0, 0.5, 1.0, 1.5 and y = 0, 1, 2, 3 have been investigated using X-ray and neutron powder diffractions. Rietveld refinements of the diffraction data indicate that all the samples crystallize in the rhombohedral Th2Zn17-type structure with only small amounts of alpha iron. It is found that the addition of Ga atoms lessens the decreasing rates of the a-axis and unit cell volume V on the Y content but almost does not affect the decreasing rates of the c-axis. However, the substitution of Y has a positive effect on the increasing rates of the a-axis and unit cell volume V on the Ga content but has a very slight effect on the increasing rate of the c-axis. The c/a ratio of Nd2−xYxFe17−yGay as a function of Ga content exhibits a different increase for different Y content owe to the combined effects of Y and Ga on the crystallographic structure. The substitution of Y is found to have little effect on the site occupancy of Ga in Nd2−xYxFe17−yGay. The combined effects of Y and Ga on the bond lengths and ASBL of Nd2−xYxFe17−yGay indicate that more bonds detrimental to ferromagnetic exchange can be modulated into the desirable ferromagnetic exchange distance range through suitable combined substitution, which provides a valuable way to improve the magnetic properties of rare earth-transition intermetallic compounds.  相似文献   

16.
The structure and magnetic properties of the Pr1−xGdxMn2Ge2 (0.0≤x≤1.0) compounds have been investigated by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. The lattice constants and the unit cell volume obey Vegard’s law. Samples in this alloy system exhibit a crossover from ferromagnetic ordering for PrMn2Ge2 to antiferromagnetic ordering for GdMn2Ge2 as a function of Gd concentration x. At low temperatures, the rare earth sublattice also orders and reconfigures the ordering in the Mn sublattice. The results are summarized in the xT magnetic phase diagram.  相似文献   

17.
The solid solution limit of Pb1−xSrxTiO3 was determined in the composition range of 0≤x≤1.0 at room temperature (RT). The phases were isolated and indexed in a tetragonal system with x<0.5 and in a cubic one with x≥0.5. The cell parameters of Pb1−xSrxTiO3 continuously, but nonlinearly, change with solubility x. The intrinsic thermal expansions of the solid solution compounds Pb1−xSrxTiO3 (x=0, 0.15, 0.20, 0.50, 0.90, 1.0) were obtained in the temperature range from RT to 1173 K with high-temperature X-ray powder diffraction. Negative thermal expansion coefficients of Pb1−xSrxTiO3 (x=0, 0.15, 0.20) were found below the Curie points. The thermal expansions of these titanate ceramics were highly correlated with the solubility in the solid solution Pb1−xSrxTiO3.  相似文献   

18.
The structure and magnetic properties of Nd1−xYxMn2Ge2 (0.0≤x≤0.6) were studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in the ThCr2Si2-type structure with space group I4/mmm. Substitution of Y for Mn led to a linear decrease in the lattice constants and the unit cell volume. Increasing substitution of Y for Nd in NdMn2Ge2 shows a depression of ferromagnetic ordering and the gradual development of antiferromagnetic ordering.  相似文献   

19.
FexCoyNi100−xy alloy nanoparticles with controllable compositions attached on the surface of carbon nanotubes (CNTs) were synthesized using an easy two-step route including adsorption and reduction processes. The nanocomposites have been characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), energy-disperse X-ray spectroscopy (EDS) and vibrating sample magnetometer (VSM). The effect of the alloy composition on microstructure and magnetic properties of ternary FeCoNi alloys attached on carbon nanotubes have been studied. During the nominal composition range (x = 21, 24, 33, 37, 46 and y = 60, 46, 48, 48, 35), FexCoyNi100−xy alloy nanoparticles attached on CNTs are quasi-spherical, fcc–bcc dual phase, and the coercivity (Hc) and saturation magnetization (Ms) vary with the alloy composition. The Hc of FexCoyNi100−xy alloy nanoparticles attached on CNTs decreases and Ms increases with increasing Fe content. These demonstrate that the two-step route is promising for fabricating alloy nanoparticles attached on CNTs for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

20.
In order to improve the thermoelectric properties via efficient phonon scattering Didymium (DD), a mixture of Pr and Nd, was used as a new filler in ternary skutterudites (Fe1−xCox)4Sb12 and (Fe1−xNix)4Sb12. DD-filling levels have been determined from combined data of X-ray powder diffraction and electron microprobe analyses (EMPA). Thermoelectric properties have been characterized by measurements of electrical resistivity, thermopower and thermal conductivity in the temperature range from 4.3 to 800 K. The effect of nanostructuring in DD0.4Fe2Co2Sb12 was elucidated from a comparison of both micro-powder (ground in a WC-mortar, 10 μm) and nano-powder (ball-milled, 150 nm), both hot pressed under identical conditions. The figure of merit ZT depends on the Fe/Co and Ni/Co-contents, respectively, reaching ZT > 1. At low temperatures the nanostructured material exhibits a higher thermoelectric figure of merit. The Vickers hardness was measured for all samples being higher for the nanostructured material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号