首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nanocrystalline and amorphous Mg2Ni-type Mg2–xLaxNi (x=0,0.2) hydrogen storage alloys were synthesized by melt-spinning technique.The as-spun alloy ribbons were obtained.The microstructures of the as-spun ribbons were characterized by X-ray diffraction (XRD),high resolution transmission electronic microscopy (HRTEM) and electron diffraction (ED).The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus,and their electrochemical kinetics were tested by an automatic galvanostatic system.The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation (PARSTAT 2273).The hydrogen diffusion coefficients in the alloys were calculated by virtue of potential-step method.The obtained results showed that no amorphous phase was detected in the as-spun La-free alloy,but the as-spun alloys substituted by La held a major amorphous phase,con-firming that the substitution of La for Mg markedly intensified the glass forming ability of the Mg2Ni-type alloy.The substitution of La for Mg notably improved the electrochemical hydrogen storage kinetics of the Mg2Ni-type alloy.Furthermore,the hydrogen storage kinetics of the experimental alloys was evidently ameliorated with the spinning rate growing.  相似文献   

2.
The nanocrystalline and amorphous Mg2Ni-type Mg2–xLaxNi (x=0,0.2) hydrogen storage alloys were synthesized by melt-spinning technique.The as-spun alloy ribbons were obtained.The microstructures of the as-spun ribbons were characterized by X-ray diffraction (XRD),high resolution transmission electronic microscopy (HRTEM) and electron diffraction (ED).The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus,and their electrochemical kinet...  相似文献   

3.
The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of the as-cast and quenched alloys were determined and measured. The effects of rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The obtained results show that the alloys are composed of the (La, Mg) Ni3 phase (PuNi3-type structure) and the LaNi5 phase, as well as the small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast alloy containing boron, and the Ni2B phase in the alloy nearly disappears after rapid quenching. The relative amount of each phase in the alloys depends on the quenching rate. The rapid quenching technique can greatly improve the electrochemical performance of the alloy, and the effect of rapid quenching on the activation performances of the alloys is minor. Rapid quenching enhances the cycle stability of the alloy, and the cycle life of the alloy increases with the increase of the quenching rate.  相似文献   

4.
In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) elec-trode alloys were fabricated by casting and annealing. The microstructures of the as-cast and annealed alloys were characterized by XRD and SEM. The electrochemical hydrogen storage characteristics of the as-cast and annealed alloys were measured. The results revealed that all of the experimental alloys mainly consisted of two phases: (La,Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. As Sm content grew from 0 to 0.4, the discharge capacity and the high rate discharge ability (HRD) first in-creased and then decreased for the as-cast and annealed alloys, whereas the capacity retaining rate (S100) after 100 cycles increased continuously.  相似文献   

5.
The melt spinning(MS) and ball milling(BM) technologies are thought to be efficient to prepare nanostructured Mg and Mg-based alloys for improving their hydrogen storage performances. In this paper, two technologies, viz. melt spinning and ball milling, were employed to fabricate the SmMg_(11)Ni alloy. The structure and hydrogen storage performance of these two kinds of alloys were researched in detail. The results reveal that the as-spun and milled alloys both contain nanocrystalline and amorphous structures. By means of the measurement of PCT curves, the thermodynamic parameters of the alloys prepared by MS and BM are ΔN_(Ms)(des) = 82.51 kJ/mol and ΔH_(BM)(des) = 81.68 kJ/mol, respectively, viz.ΔH_(MS)(des) ΔH_(BM)(des). The as-milled alloy shows a larger hydrogen absorption capacity as compared with the as-spun one. The as-milled alloy exhibits lower onset hydrogen desorption temperature than the as-spun one. As to the as-milled and spun alloys, the onset hydrogen desorption temperatures are557.6 and 565.3 K, respectively. Additionally, the as-milled alloy shows a superior hydrogen desorption property than the as-spun one. On the basis of time that required by desorbing hydrogen of 3 wt% H_2, the as-milled alloy needs 1488.574,390 and 192 s corresponding to hydrogen desorption temperatures 593,613,633 and 653 K, while the as-spun alloy needs 3600,1020,778 and 306 s corresponding to the same temperatures. The dehydrogenation activation energies of the as-milled and spun alloys are 100.31 and105.56 kJ/mol, respectively, the difference of which is responsible for the much faster dehydriding rate of the as-milled alloy.  相似文献   

6.
Nanocrystalline and amorphous La_(2–x)Sm_xMg_(16)Ni+200wt.% Ni(x=0, 0.1, 0.2, 0.3, 0.4) alloys were prepared by mechanical milling technology. The structures of as-cast and milled alloys were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). Electrochemical performance of the alloy was studied by using an automatic galvanostatic system. The electrochemical impedance spectra(EIS) and Tafel polarization curves were measured by electrochemical workstation. The results indicated that the structures of the as-cast and milled alloys presented a multiphase structure with nanocrystalline and amorphous phase, moreover, transforming from nanocrystalline to amorphous phase with Sm doping. With the increase of Sm content, the maximum discharge capacity of the alloy was decreased from 922.6 to 649.1 m Ah/g, the high-rate discharge ability(HRD) was decreased, the cycle stability was strengthened, and the alloy exhibited excellent electrochemical kinetics. In addition, the charge-transfer resistance(R_(ct)) of alloy was lessened from 0.05874 to 0.02953 ? and the limiting current density(I_L) was descended from 2.08366 to 1.04592 A/g with increasing Sm content.  相似文献   

7.
Aiming at the improvement of the cyclic stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe. The electrode alloys of La0.7Mg0.3Co0.45Ni255-xFex (x=0, 0.1, 0.2, 0.3, 0.4) were prepared by casting and rapid quenching. The influence of the quenching on cyclic stability as well as structure of the alloys was investigated in detail. The results of electrochemical measurement indicated that rapid quenching significantly improved cyclic stability. When the quenching rate rose from 0 (As-cast was defined as a quenching rate of 0 m/s) to 30 m/s, the cyclic life of Fe-free alloy (x=-0) increased from 81 to 105 cycles, and for alloy containing Fe(x=0.4), it grew from 106 to 166 cycles at a current density of 600 mA/g. The results obtained by XRD, TEM and SEM revealed that the as-cast and quenched alloys had multiphase structures, including two major phases (La, Mg)Ni3 and LaNi5 as well as an imptLrity phase LaNi2. Rapid quenching helped the formation of an amorphous-like structure in Fe containing alloys.  相似文献   

8.
To improve the hydrogen storage performance of PrMg_(12)-type alloys,Ni was adopted to replace partially Mg in the alloys. The PrMg_(11)Ni+x wt.% Ni( x = 100,200) alloys were prepared via mechanical m illing. The phase structures and m orphology of the experim ental alloys were investigated by X-ray diffraction and transm ission electron microscopy. The results show that increasing milling time and Ni content accelerate the form ation of nanocrystalline and am orphous structure. The gaseous hydrogen storage properties of the experim ental alloys were determ ined by differential scanning calorim etry( DSC) and Sievert apparatus. In addition,increasing milling time makes the hydrogenation rates of the alloys augment firstly and decline subsequently and the dehydrogenation rate always increases. The maximum capacity is 5. 572 wt. % for the x = 100 alloy and 5. 829 wt. % for the x = 200 alloy,respectively. The enthalpy change( ΔH),entropy change( ΔS) and the dehydrogenation activation energy( E_k~(de)) markedly lower with increasing the milling time and the Ni content due to the generation of nanocrystalline and amorphous structure.  相似文献   

9.
In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure of the alloys were investigated in detail. XRD results showed that the alloys had multiphase structure composed of (La, Mg)2Ni7, LaNi5 and small amount of LaNi2 phases. The discharge capacity of the alloys first increased and then decreased with increasing Co content. At a discharge current density of 900 mA/g, the HRD of the alloy electrodes increased from 81.3% (x=0) to 89.2 % (x=0.2), and then reduced to 87.8 % (x=0.6). After 60 charge/discharge cycles, the capacity retention rate of the alloys enhanced from 52.67% to 61.32%, and the capacity decay rate of the alloys decreased from 2.60 to 2.05 mAh/g per cycle with increasing Co content. The obtained results by XPS and XRD showed that the fundamental reasons for the capacity decay of the La-Mg-Ni system (Ce2Ni7-type) alloy electrodes were corrosion and oxidation as well as passivation of Mg and Lain alkaline solution.  相似文献   

10.
The structure and high-temperature electrochemical properties of the as-cast and annealed (940 °C, 8 h) La0.60Nd0.15Mg0.25Ni3.3Si0.10 hydrogen storage alloys were investigated. The X-ray diffraction revealed that the multiphase structure of the as-cast alloy with LaNi5 phase as the main phase was converted into a double-phase structure with La2Ni7 phase as the main phase after annealing. The surface morphology studied by scanning electronic microscope (SEM) showed that the annealed alloy had a much higher anti-corrosion ability than the as-cast alloy. Both alloys presented excellent activation characteristics at all test temperatures. The maximum discharge capacity of the as-cast alloy decreased when the test temperature increased, while the temperature almost had no effect on the annealed alloy. As the test temperature increased, the cyclic stability and charge retention of both alloys decreased, and these properties were improved significantly by annealing.  相似文献   

11.
The nanocrystalline and amorphous Mg2Ni-type electrode alloys with a composition of Mg20?xYxNi10 (x=0, 1, 2, 3 and 4) were fabricated by mechanical milling. Effects of Y content on the structures and e...  相似文献   

12.
The effect of rapid solidification on structure and electrochemical performance of the LaNi4.5Co0.25Al0.25 hydrogen storage alloy was investigated by X-ray powder diffraction and a simulated battery test, including maximum capacity, cycling stability, self-discharge, and high-rate discharge ability (HRD). All the melt-spun alloys were single-phase with the CaCu5-type structure (space groupP6/mmm). In comparison to the as-cast alloy, the rapidly quenched alloys manifested an improved homogeneity of com-position and expanded lattice parameters. The electrochemical measurements showed that the activation property, cycling stability and self-discharge of the alloy electrodes were also improved for the rapid solidified alloys. The HRDof the as-cast alloy was better than those of all the rapidly solidified alloys. As the quenching rate increased, the HRD and exchange current density first decreased and then increased.  相似文献   

13.
Melting method was used to obtain La2Mg17 alloy,and then Ni powder was added by mechanical alloying method.The kinetics of hydriding process and electrochemical properties of La2Mg17-x wt.%Ni(x=0,50,100,150,200) composites were investigated.X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses showed that the crystal structure of composite alloy gradually transformed into amorphous phase by the effect of ball milling and Ni powders.The research of hydrogen absorption properties found that La2Mg 17-50 wt.%Ni reached the highest hydrogen absorption than other alloys with more addition of Ni content,reached to 5.796 wt.% at 3 MPa,and up to 5.229 wt.% merely in 2 min,which revealed that the amorphous phase reduced the H occupation of the lattice clearance,resulting in the decline of hydrogen absorption capacity.The electrochemical tests indicated that the maximum discharge capacity increased to 353.1 mAh/g at 30 oC,however,the cycle stability decreased considerably.A series of kinetic measurements demonstrated that the controlling steps of electrochemical process of La 2 Mg 17-x wt.%Ni alloys transferred from hydrogen diffusion on alloy bulk(x=50,100) to hydrogen diffusion on both alloy bulk and surface(x=150,200).  相似文献   

14.
Phase compositions, morphologies and hydrogen storage properties of the as-cast and copper-mould-cast LaMgaNi alloys were studied. The dehydriding onset temperature of the as-cast alloy hydride was about 500 K, which was at least 50 K higher than that of the copper-mould-cast one, and the copper-mould-cast alloy hydride had a faster dehydriding rate compared with as-cast one. Additionally, the copper-mould-cast alloy could uptake 2.85 wt.% hydrogen, which was 95.0% of saturated hydrogen storage capac- ity at room temperature. While only 1.80 wt.% hydrogen (60% of saturated capacity) was absorbed for the as-cast alloy under the same conditions. The reversible hydrogen storage capacities and plateau hydrogen pressures of the two alloys were close. X-ray dif- fractions and scanning electron microscopy results indicated that similar thermodynamic property of the two alloys should be ascribed to the same hydrogen storage phase, Mg and MgzNi. The better hydrogen sorption kinetics of copper-mould-cast alloy should be as- cribed to the more uniform phase distribution compared with that of the as-cast one.  相似文献   

15.
La0.8Pr0.2MgNi3.6Co0.4 alloys were prepared by induction melting,annealing and melt spinning techniques.The influences of annealing treatment and melt spinning on phase structure and hydrogen storage properties were systematically investigated.The results of X-ray diffraction determine that the as-cast and as-spun La0.8Pr0.2MgNi3.6Co0.4 alloys consist of LaMgNi4 and LaNi5 phases,while only LaMgNi4 phase is present in the as-annealed alloy.The scanning electron microscope images illustrate that the grain of the alloy is significantly refined by melt spin ning tech no logy.The gaseous hydrogen storage kinetic and thermodynamic properties were measured by using a Sievert's apparatus at different temperatures.The maximum hydrogen storage capacity of the as-cast,as?spun and as-annealed La0.8Pr0.2MgNi3.6Co0.4 alloy is 1.699,1.637 and 1.535 wt.% at 373 K and 3 MPa,respectively.The annealed alloy has flatter and wider pressure plateaus compared with the as-cast and as-spun alloys,which correspond to the hydrogen absorption and desorption process of LaMgNi4 and corresponding hydride.Furthermore,the enthalpy and entropy changes of LaMgNi4 during hydrogenation at different temperatures were calculated using Van't Hoff methods.  相似文献   

16.
RE3-xMgx(Ni0.7Co0.2Mn0.1)9 (x=0.5-1.25) alloys were prepared by induction melting and the influence of the partial substitution of RE (where RE stands for La-rich mischmetal) by Mg on the hydrogen storage and electrochemical properties of the alloys were investigated systematically. These alloys mainly consisted of three phases, La(Ni,Mn,Co)5 phase, La2Ni7 phase and Mg2Ni phase. The P-C-T isotherms showed that with Mg content increasing in the alloys, the hydrogen storage capacity first increased and reached the maximum capacity of 1.36 wt.% when x=1.0, and then decreased with x increasing further. Electrochemical studies revealed that the discharge capacity reached the maximum value of 380 mAh/g and the alloy electrode presented better cyclic stability when RE/Mg=2. The high rate discharge ability of the alloy electrodes was also improved by the substitution of Mg for RE. The RE2Mg(Ni0.7Co0.2Mn0.1)9 alloy exhibited better hydrogen absorption kinetics (x=1.0).)  相似文献   

17.
La-Mg-Ni-Mn-based AB_2-type La_(1–x)Ce_xMgNi_(3.5)Mn_(0.5)(x=0–0.4) alloys were prepared by melt spinning technology. The detections of X-ray diffraction(XRD) and scanning electron microscopy(SEM) indicated that the experimental alloys consisted of a major phase LaMgNi_4 and a secondary phase LaNi_5. With spinning rate growing, the abundance of LaMgNi_4 phase increased and that of LaNi_5 phase decreased. Moreover, with the melt spinning rate increasing, both the lattice constants and cell volumes increased, and further accelerated the grains refinement of the alloys. The electrochemical tests showed that the as-spun alloys possessed excellent capability of activation, achieving the maximum discharge capacities just at the first cycling without any activation needed. As for the as-spun alloys, its discharge potential characteristics could be improved obviously by adopting the technology of melt spinning. In addition, the melt spinning raised electrochemical cycle stability of the alloys, the main reason was that the melt spinning enhanced the anti-pulverization ability of the alloys. With spinning rate increasing, the discharge capacity of the alloys presented a tendency to increase firstly then decrease. Moreover, the electrochemical kinetics of the alloys showed the same trend under fixed condition.  相似文献   

18.
The La0.55Pr0.05Nd0.15Mg0.25Ni3.5(Co0.5Al0.5)x(x=0.0, 0.1, 0.3, 0.5) alloys were prepared by magnetic levitation melting under an Ar atmosphere, and the effects of Co and Al on the hydrogen storage and electrochemical properties were systematically investigated by pressure composition isotherms, cyclic voltammetry, Tafel polarization and electrochemical impedance spectroscopy testing. The results showed that the alloy phases were mainly consisted of (La,Pr)(Ni,Co)5, LaMg2Ni9, (La,Nd)2Ni7 and LaNi3 phases, and the cell volumes of (La,Pr)(Ni,Co)5, LaMg2Ni9, (La,Nd)2Ni7 and LaNi3 phases expanded with Co and Al element added. The hydrogen storage capacity initially increased from 1.36 (x=0) to 1.47 wt.% (x=0.3) and then decreased to 1.22 wt.% (x=0.5). The discharge capacity retention and cycle stability of the alloy electrodes were improved with the increase of Co and Al contents. The La0.55Pr0.05Nd0.15Mg0.25Ni3.5(Co0.5Al0.5)0.3 alloy electrode possessed better electrochemical kinetic characteristic.  相似文献   

19.
To improve the cyclic stability of La-Mg-Ni system alloy, as-cast La0.75Mg0.25Ni3.5Co0.2 alloy was annealed at 1123, 1223, and 1323 K for 10 h in 0.3 MPa argon. The microstructure and electrochemical performance of different annealed alloys were investigated systematically by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), and electrochemical experiments. The results obtained by XRD and SEM showed that the as-cast and annealed (1123 K) alloys had multiphase structure containing LaNis, (La, Mg)2(Ni, Co)7 and few LaNi2 phases. When annealing temperatures approached 1223 and 1323 K, LaNi2 phase disappeared. The annealed alloys at 1223 and 1323 K were composed of LaNi5, (La, Mg)2(Ni, Co)7 and (La, Mg)(Ni, Co)3 phases. With increasing annealing temperature, the maximum discharge capacity of the alloy decreased monotonously, but the cyclic stability was improved owing to structure homogeneity and grain growth after annealing, as well as the enhancement of anti-oxidation/corrosion ability and the suppression of pulverization during cycling in KOH electrolyte.  相似文献   

20.
Nd_9Fe_(85–x)Ti_4C_2B_x(x=10–15) magnetic alloys were investigated by differential thermal analysis and X-ray diffraction analysis. The results showed that with the B content increasing from 10 at.% to 15 at.%, the liquidus temperatures TL of the alloys decreased from 1498.5 to 1472.5 K; the solidus temperatures TS of them increased from 1353.2 to 1358.3 K; and the nucleation undercooling of the alloy melts cooled at the rate of 40 K/min decreased from 122.8 to 95.9 K, resulting in the solidification structures consisting of Nd_2Fe_(14)B, Fe_3B, α-Fe, Nd1.1Fe4B4 and TiC nanocrystallines. Furthermore, the Nd_9Fe_(85–x)Ti_4C_2B_x(x=11, 13, 15) bulk alloys in sheet form with the thickness of 0.7 mm were prepared by copper mold suction casting and their solidification characteristics and solidification structures under sub-rapidly cooling rate were investigated. The results showed that partially amorphous structures were obtained in the as-cast bulk alloys and the amount of amorphous decreased with the increase of the B content. By annealing the as-cast bulk alloys at 923 K for 10 min, the nanocomposite microstructures composed with Nd_2Fe_(14)B, Fe_3B and α-Fe nanocrystallines, which showed a single-phase hard magnetic behavior and enhanced magnetic properties, were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号